scholarly journals Reviving the “Schottky” Barrier for Flexible Polymer Dielectrics with a Superior 2D Nanoassembly Coating (Adv. Mater. 34/2021)

2021 ◽  
Vol 33 (34) ◽  
pp. 2170264
Author(s):  
Boya Zhang ◽  
Jingjing Liu ◽  
Ming Ren ◽  
Chao Wu ◽  
Thomas J. Moran ◽  
...  
2021 ◽  
pp. 2101374
Author(s):  
Boya Zhang ◽  
Jingjing Liu ◽  
Ming Ren ◽  
Chao Wu ◽  
Thomas J. Moran ◽  
...  

2016 ◽  
Vol 136 (4) ◽  
pp. 479-483
Author(s):  
Masataka Higashiwaki ◽  
Kohei Sasaki ◽  
Hisashi Murakami ◽  
Yoshinao Kumagai ◽  
Akito Kuramata

2020 ◽  
Author(s):  
Thomas Herzog ◽  
Naomi Weitzel ◽  
Sebastian Polarz

<div><div><div><p>One of the fascinating properties of metal-semiconductor Schottky-barriers, which has been observed for some material combinations, is memristive behavior. Memristors are smart, since they can reversibly switch between a low resistance state and a high resistance state. The devices offer a great potential for advanced computing and data storage, including neuromorphic networks and resistive random-access memory. However, as for many other cases, the presence of a real interface (metal - metal oxide) has numerous disadvantages. The realization of interface-free, respectively Schottky-barrier free memristors is highly desirable. The aim of the current paper is the generation of nanowire arrays with each nanorod possessing the same crystal phase (Rutile) and segments only differing in composition. The electric conductivity is realized by segments made of highly-doped antimony tin oxide (ATO) transitioning into pure tin oxide (TO). Complex nanoarchitectures are presented, which include ATO-TO, ATO-TO-ATO nanowires either with a stepwise distribution of antimony or as a graded functional material. The electrical characterization of the materials reveals that the introduction of memristive properties in such structures is possible. The special features observed in voltage-current (IV) curves are correlated to the behavior of mobile oxygen vacancies (VO..) at different values of applied electrical potential.</p></div></div></div>


2020 ◽  
Vol 13 (9) ◽  
pp. 096502
Author(s):  
Yu Lu ◽  
Feng Zhou ◽  
Weizong Xu ◽  
Dongsheng Wang ◽  
Yuanyang Xia ◽  
...  

1993 ◽  
Vol 58 (10) ◽  
pp. 2290-2304 ◽  
Author(s):  
Zuzana Limpouchová ◽  
Karel Procházka

Monte Carlo simulations of chain conformations in a restricted spherical volume at relatively high densities of segments were performed for various numbers of chains, N, and chain lengths (number of segments), L, on a tetrahedral lattice. All chains are randomly end-tethered to the surface of the sphere. A relatively uniform surface density of the tethered ends is guaranteed in our simulations. A simultaneous self-avoiding walk of all chains creates starting conformations for a subsequent equilibration. A modified algorithm similar to that of Siepmann and Frenkel is used for the equilibration of the chain conformations. In this paper, only a geometrical excluded volume effect of segments is considered. Various structural and conformational characteristics, e.g. segment densities gS(r), free end densities gF(r) as functions of the position in the sphere (a distance from the center), distributions of the tethered-to-free end distances, ρTF(rTF), etc. are calculated and their physical meaning is discussed. The model is suitable for studies of chain conformations is swollen cores of multimolecular block copolymer micelles and for interpretation of non-radiative excitation energy migration in polymeric micellar systems.


Sign in / Sign up

Export Citation Format

Share Document