high resistance state
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 53)

H-INDEX

11
(FIVE YEARS 4)

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Ke-Jing Lee ◽  
Yeong-Her Wang

Zr can be stabilized by the element selected, such as Mg-stabilized Zr (MSZ), thus providing MSZ thin films with potentially wide applications and outstanding properties. This work employed the element from alkaline earth metal stabilized Zr to investigate the electrical properties of sol–gel AZrOx (A = alkaline earth metal; Mg, Sr, Ba) as dielectric layer in metal-insulator–metal resistive random-access memory devices. In addition, the Hume–Rothery rule was used to calculate the different atomic radii of elements. The results show that the hydrolyzed particles, surface roughness, and density of oxygen vacancy decreased with decreased difference in atomic radius between Zr and alkaline earth metal. The MgZrOx (MZO) thin film has fewer particles, smoother surface, and less density of oxygen vacancy than the SrZrOx (SZO) and BaZrOx (BZO) thin films, leading to the lower high resistance state (HRS) current and higher ON/OFF ratio. Thus, a suitable element selection for the sol–gel AZrOx memory devices is helpful for reducing the HRS current and improving the ON/OFF ratio. These results were obtained possibly because Mg has a similar atomic radius as Zr and the MgOx-stabilized ZrOx.


2021 ◽  
Author(s):  
Yisen Wang ◽  
Zhifang Huang ◽  
Xinyi Chen ◽  
Miao Lu

Abstract The two-dimensional hexagonal boron nitride (h-BN) has been used as resistive switching (RS) material for memory due to its insulation, good thermal conductivity and excellent thermal/chemical stability. A typical h-BN based RS memory employs a Metal-Insulator-Metal (MIM) vertical structure, in which metal ions pass through the h-BN layers to realize the transition from high resistance state (HRS) to low resistance state (LRS). Alternatively, just like the horizontal structure widely used in the traditional MOS capacitor based memory, the performance of in-plane h-BN memory should also be evaluated to determine its potential applications. As consequence, a horizontal structured resistive memory has been designed in this work by forming freestanding h-BN across Ag nanogap, where the two-dimensional h-BN favored in-plane transport of metal ions to emphasize the RS behavior. As a result, the memory devices showed switching slope down to 0.25 mV/dec, ON/OFF ratio up to 1E8, SET current down to pA and SET voltage down to 180 mV.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7535
Author(s):  
Ghulam Dastgeer ◽  
Amir Muhammad Afzal ◽  
Jamal Aziz ◽  
Sajjad Hussain ◽  
Syed Hassan Abbas Jaffery ◽  
...  

Two-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices are easy to build, because of their flexible nature. Here, we report on our flexible resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO2/WTe2) heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible PET substrate. The Ag/SnO2/WTe2/Au flexible devices exhibited highly stable resistive switching along with an excellent retention time. Triggering the device from a high-resistance state (HRS) to a low-resistance state (LRS) is attributed to Ag filament formation because of its diffusion. The conductive filament begins its development from the anode to the cathode, contrary to the formal electrochemical metallization theory. The bilayer structure of SnO2/WTe2 improved the endurance of the devices and reduced the switching voltage by up to 0.2 V compared to the single SnO2 stacked devices. These flexible and low-power-consumption features may lead to the construction of a wearable memory device for data-storage purposes.


Author(s):  
Kyoungdu Kim ◽  
Changmin Lee ◽  
Won-Yong Lee ◽  
Do Won Kim ◽  
Hyeon Joong Kim ◽  
...  

Abstract Sol–gel-processed Y2O3 films were used as an active-channel layer for RRAM devices. The effect of post-annealing temperature on structural, chemical, and electrical characteristics was investigated. The Y2O3-RRAM devices, comprising electrochemically active metal electrodes, Ag, and Indium tin oxide (ITO) electrodes exhibited the conventional bipolar RRAM device operation. The fabricated Ag/Y2O3/ITO RRAM devices, comprising 500-℃ annealed Y2O3 films, exhibited less oxygen vacancy and defect, which reduced the leakage current and boosted high-resistance state/low-resistance state ratio, more than 10^5, and promising nonvolatile memory properties without deterioration for 100 cycles and 10^4 seconds.


2021 ◽  
Vol 2065 (1) ◽  
pp. 012001
Author(s):  
Z J Weng ◽  
Z W Zhao ◽  
H L Jiang ◽  
Y Fang

Abstract The continued exploration of novel synthetic memristive materials with multifunctional properties is critical for future synapse-emulating circuits and electronic devices in the field of next-generation neuromorphic computing applications. In this work, the silver nanowires (AgNWs)-Egg albumen composites have been integrated as a resistive switching layer in the Ag/AgNWs-Egg albumen/Ag planar structure and exhibits both unipolar (memory) switching and threshold switching functions. The device in unipolar switching regime demonstrates an ON/OFF ratio above 105, a low resistance state of about 1.2 KΩ and a high resistance state of about 120 MΩ. Finally, a mechanism in combination with the conductive filament theory and a tunnelling conduction mechanism is proposed to explain the resistive switching behavior. The devices are prepared by simple and low-cost techniques, which make such devices appealing for future electronic applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao-Ting Chin ◽  
Jiri Klimes ◽  
I-Fan Hu ◽  
Ding-Rui Chen ◽  
Hai-Thai Nguyen ◽  
...  

AbstractWe here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history controls the transition voltage between low-resistance and high-resistance state. This advance enables the realization of rugged, non-volatile, mechanical memory exhibiting switching ratios of 106, 4 bit storage capabilities and no degradation after 10,000 switching cycles.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2525
Author(s):  
Jhen-Yong Hong ◽  
Chun-Yen Chen ◽  
Dah-Chin Ling ◽  
Isidoro Martínez ◽  
César González-Ruano ◽  
...  

Low-frequency 1/f voltage noise has been employed to probe stochastic charge dynamics in AlOx-based non-volatile resistive memory devices exhibiting both resistive switching (RS) and magneto-resistive (MR) effects. A 1/fγ noise power spectral density is observed in a wide range of applied voltage biases. By analyzing the experimental data within the framework of Hooge’s empirical relation, we found that the Hooge’s parameter α and the exponent γ exhibit a distinct variation upon the resistance transition from the low resistance state (LRS) to the high resistance state (HRS), providing strong evidence that the electron trapping/de-trapping process, along with the electric field-driven oxygen vacancy migration in the AlOx barrier, plays an essential role in the charge transport dynamics of AlOx-based RS memory devices.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1531
Author(s):  
Hojeong Ryu ◽  
Beomjun Park ◽  
Sungjun Kim

In this work, we demonstrate the threshold switching and bipolar resistive switching with non-volatile property of TiN/TaOx/indium tin oxide (ITO) memristor device. The intrinsic switching of TaOx is preferred when a positive bias is applied to the TiN electrode in which the threshold switching with volatile property is observed. On the other hand, indium diffusion could cause resistive switching by formation and rupture of metallic conducting filament when a positive bias and a negative bias are applied to the ITO electrode for set and reset processes. The bipolar resistive switching occurs both with the compliance current and without the compliance current. The conduction mechanism of low-resistance state (LRS) and high-resistance state (HRS) are dominated by Ohmic conduction and Schottky emission, respectively. Finally, threshold switching and bipolar resistive switching are verified by pulse operation.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2222
Author(s):  
Hassan Aziza ◽  
Said Hamdioui ◽  
Moritz Fieback ◽  
Mottaqiallah Taouil ◽  
Mathieu Moreau ◽  
...  

RRAM density enhancement is essential not only to gain market share in the highly competitive emerging memory sector but also to enable future high-capacity and power-efficient brain-inspired systems, beyond the capabilities of today’s hardware. In this paper, a novel design scheme is proposed to realize reliable and uniform multi-level cell (MLC) RRAM operation without the need of any read verification. RRAM quad-level cell (QLC) capability with 4 bits/cell is demonstrated for the first time. QLC is implemented based on a strict control of the cell programming current of 1T-1R HfO2-based RRAM cells. From a design standpoint, a self-adaptive write termination circuit is proposed to control the RESET operation and provide an accurate tuning of the analog resistance value of each cell of a memory array. The different resistance levels are obtained by varying the compliance current in the RESET direction. Impact of variability on resistance margins is simulated and analyzed quantitatively at the circuit level to guarantee the robustness of the proposed MLC scheme. The minimal resistance margin reported between two consecutive states is 2.1 kΩ along with an average energy consumption and latency of 25 pJ/cell and 1.65 μs, respectively.


2021 ◽  
Vol 50 (5) ◽  
pp. 311-325
Author(s):  
A. V. Fadeev ◽  
K. V. Rudenko

Abstract In this review of experimental studies, the retention time and endurance of memristor RRAM memory elements based on reversible resistive switching in oxide dielectrics are studied. The influence of external parameters—switching pulses and ambient temperature—as well as internal factors—evolution of the concentration of oxygen vacancies in the filament region, the material, structure; the thickness of the active dielectric layer, material of metal electrodes on the long-term stability of high resistance state (HRS) and the low resistance state (LRS) of the memristor is discussed.


Sign in / Sign up

Export Citation Format

Share Document