CNT-Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing

2016 ◽  
Vol 1 (9) ◽  
pp. 1600176 ◽  
Author(s):  
Keith A. Slinker ◽  
Corey Kondash ◽  
Benjamin T. Dickinson ◽  
Jeffery W. Baur
2003 ◽  
Vol 3 (5-6) ◽  
pp. 67-72
Author(s):  
S. Takizawa ◽  
T. Win

In order to evaluate effects of operational parameters on the removal efficiency of trichloroethylene and 1,1,1-trichloroethene from water, lab-scale experiments were conducted using a novel hollow-fibre gaspermeable membrane system, which has a very thin gas-permeable membrane held between microporous support membranes. The permeation rate of chlorinated hydrocarbons increased at higher temperature and water flow rate. On the other hand, the effects of the operational conditions in the permeate side were complex. When the permeate side was kept at low pressure without sweeping air (pervaporation), the removal efficiency of chlorinated hydrocarbon, as well as water permeation rate, was low probably due to lower level of membrane swelling on the permeate side. But when a very small amount of air was swept on the membrane (air perstripping) under a low pressure, it showed a higher efficiency than in any other conditions. Three factors affecting the permeation rate are: 1) reduction of diffusional boundary layer within the microporous support membrane, 2) air/vapour flow regime and short cutting, and 3) the extent of membrane swelling on the permeate side. A higher air flow, in general, reduces the diffusional boundary layer, but at the same time disrupts the flow regime, causes short cutting, and makes the membrane dryer. Due to these multiple effects on gas permeation, there is an optimum operational condition concerning the vacuum pressure and the air flow rate. Under the optimum operational condition, the residence time within the hollow-fibre membrane to achieve 99% removal of TCE was 5.25 minutes. The log (removal rate) was linearly correlated with the average hydraulic residence time within the membrane, and 1 mg/L of TCE can be reduced to 1 μg/L (99.9% removal).


2020 ◽  
Vol 32 (12) ◽  
pp. 125120
Author(s):  
María Jiménez-Portaz ◽  
Luca Chiapponi ◽  
María Clavero ◽  
Miguel A. Losada

2002 ◽  
Vol 104 (1) ◽  
pp. 53-72 ◽  
Author(s):  
Burghard Brümmer ◽  
Stefan Thiemann

2021 ◽  
pp. 493-504
Author(s):  
Artem Litvinov ◽  
Ivan Yaitskov ◽  
Pavel Polyakov ◽  
Alexey Golikov ◽  
Evgeny Fedotov ◽  
...  

Author(s):  
Kwan Yee Chan ◽  
Joseph K-W Lam

Water condensation in aircraft fuel tank vent systems can run off to the fuel systems, where it can freeze to ice or support microbial growth in the fuel tanks. A laboratory scale test has been designed to investigate the ingress and runoff of water in the aircraft fuel tank vent pipes. The experiments are to determine the dual effects of air flow shear and hydrophobicity on water condensation in the vent pipes during descent from cruising altitudes. Results show only downslope runoff occurs and for large drop volumes where the height of the water drop is comparable with the height of the air flow boundary layer. Runoff is much more sensitive to drop volume and vent pipe inclination angle than air flow since the drops are within the air flow boundary layer. Downslope air flow has little effect on the runoff speeds. Downslope runoff speeds, where there is upslope air flow, exhibit large variations, when compared to those where there is downslope air flow. Upslope air flow can slow downslope runoff speeds of large volume drops by up to 400%. Runoff speeds may be up to 100 times greater with a hydrophobic coating than on the current inner vent pipe surface of anodised aluminium.


Sign in / Sign up

Export Citation Format

Share Document