hydrophobic coating
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 125)

H-INDEX

29
(FIVE YEARS 8)

Author(s):  
Yu. Tsapko ◽  
◽  
O. Bondarenko ◽  
А. Tsapko ◽  
◽  
...  

Abstract. The analysis of fire-retardant materials for fabrics is carried out and it is established that the paucity of data for explanation and description of the process of fire protection, neglect of elastic coatings, leads to ignition of fabric structures under the action of flame. The development of reliable methods for studying the conditions of fire protection of fabrics leads to the creation of new types of fire protective materials. Therefore, it becomes necessary to determine the conditions for the formation of a barrier both for high temperatures and for leaching in the presence of precipitation and to establish a mechanism for inhibition of these processes. In this regard, full-scale tests were carried out and it was found out that when the flame is applied to untreated model samples of tent elements made of canvas fabric, the surface ignites and spreads the flame, which leads to their complete combustion within 105...120 s, instead, the model The fire-resistant sample of tent elements did not catch fire when ignited with a gasoline-based substance, and the flame did not spread. In this case, the final combustion was recorded for 3 c and the swelling of the protective coating reached 3...5 mm, and the surface was charred on an area of about 80% from the inside. When tested for fire retardant efficiency for a fire-resistant sample treated with a water repellent (5 % solution of GDJ-94), a decrease in efficiency and carbonization of the material was recorded, which amounted to 100%, and for a fire-resistant sample treated with a water repellent (5 % solution), a decrease in efficiency was recorded due to the combustion of paraffin and local burnout of the material, and carbonization was 100 %. Obviously, such a mechanism of influence of the fire-retardant coating is the factor regulating the process, which preserves the integrity of the object. Thus, there is reason to argue about the possibility of targeted regulation of the processes of fire protection of the fabric by applying coatings capable of forming a protective layer on the surface of the material, which inhibits the rate of heat penetration.


Author(s):  
Daniel Sedláček ◽  
Martina Roso ◽  
Leano Viel ◽  
Nicola Perotto ◽  
Barnaby Caven ◽  
...  

The effects of 4 months of weather exposure on the ageing of dynamic climbing ropes made of polyamide 6 were studied and differences between ropes with and without hydrophobic coating were examined. The polyamide degradation of the rope yarns was studied using infrared spectroscopy and a quasi-static tensile test. The number of falls to failure and the maximum force on the climber in a fall were evaluated with a drop test according to the UIAA 101 standard. Moreover, changes in the length of the ropes due to weathering were measured. The following results were found. After 4 months of weathering, sheath yarns of the coated rope showed a greater decrease in breaking force than those of the uncoated rope, which might be due to reactions of polyamide with radicals formed during the photo-induced oxidation of the coating. In contrast, the core yarns from the uncoated rope showed a greater decrease in breaking force than those from the coated rope, probably due to prolonged exposure of the uncoated core to water with possibly dissolved atmospheric acids. Furthermore, the decrease in the number of falls to failure was greater in the uncoated than in the coated rope. This difference was explained by a mechanism of changes in radial pressure of the sheath on the core. Regarding the maximum force on the climber, no significant changes due to ageing were observed during the drop test. Thus, it was concluded that 4 months of weather exposure do not pose a safety risk for climbing ropes, but the negative effect of coating on the ageing of polyamide might be detrimental when it comes to static personal safety equipment, such as slings or accessory cords.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042038
Author(s):  
M S Lisyatnikov ◽  
V Yu Chukhlanov ◽  
A V Korshakov

Abstract The questions of interaction of one-component polyurethane and organosilicon compound from the group of alkoxysilanes - tetrapropoxysilane are considered. The composition is intended to obtain a hydrophobic coating with improved performance properties to protect building structures from the effects of technogenic and natural factors. The mechanisms of interaction of one-component polyurethane with tetrapropoxysilane have been studied using spectroscopy. The product of the interaction of the polymer and tetrapropoxysilane is a three-dimensionally crosslinked polymer in which polyurethane macromolecules are crosslinked by organosilicon molecules. The chemical reaction is based on the mechanism of interaction of isocyanate groups with reactive groups of alkoxysilane. The effect of the modifier on the surface structure of the cured coating was studied using a microscope. The contact angle of wetting of the modified and unmodified composition is determined, and the concentration of tetrapropoxysilane at which the coating acquires hydrophobic properties is determined. The effect of tetrapropoxysilane on the adhesive characteristics of the polymer composition has been studied. The change in the hardness of the composition at various concentrations of alkoxysilane was studied. Chemical modification of polyurethane allows you to vary its properties in the desired direction without deteriorating its other characteristics.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4149
Author(s):  
Adelya Kenzhebayeva ◽  
Baglan Bakbolat ◽  
Fail Sultanov ◽  
Chingis Daulbayev ◽  
Zulkhair Mansurov

An aggressive impact of the formed ice on the surface of man-made objects can ultimately lead to serious consequences in their work. When icing occurs, the quality and characteristics of equipment, instruments, and building structures deteriorate, which affects the durability of their use. Delays in the adoption of measures against icing endanger the safety of air travel and road traffic. Various methods have been developed to combat de-icing, such as mechanical de-icing, the use of salts, the application of a hydrophobic coating to the surfaces, ultrasonic treatment and electric heating. In this review, we summarize the recent advances in the field of anti-icing and analyze the role of various additives and their operating mechanisms.


2021 ◽  
pp. 363-369
Author(s):  
Guanyu Liu ◽  
Huiyun Xia* ◽  
Yanhui Niu* ◽  
Wenshuo Zhang ◽  
Lei Lang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6799
Author(s):  
Matteo Poddighe ◽  
Plinio Innocenzi

Fabrication of hydrophobic thin films from a liquid phase is a hot topic with critical technological issues. Interest in the production of hydrophobic surfaces is growing steadily due to their wide applications in several industrial fields. Thin films from liquid phases can be deposited on different types of surfaces using a wide variety of techniques, while the design of the precursor solution offers the possibility of fine-tuning the properties of the hydrophobic coating layers. A general trend is the design of multifunctional films, which have different properties besides being hydrophobic. In the present review, we have described the synthesis through sol–gel processing of hydrophobic films enlightening the main achievements obtained in the field.


Sign in / Sign up

Export Citation Format

Share Document