furnace wall
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 880
Author(s):  
Stijn Vangaever ◽  
Joost Van Thielen ◽  
Jeremy Hood ◽  
John Olver ◽  
Petra Honnerovà ◽  
...  

The effect of high emissivity coatings on the radiative heat transfer in steam cracking furnaces is far from understood. To start, there is a lack of experimental data describing the emissive properties of the materials encountered in steam cracking furnaces. Therefore, spectral normal emissivity measurements are carried out, evaluating the emissive properties of refractory firebricks before and after applying a high emissivity coating at elevated temperatures. The emissive properties are enhanced significantly after applying a high emissivity coating. Pilot unit steam cracking experiments show a 5% reduction in fuel gas firing rate after applying a high emissivity coating on the refractory of the cracking cells. A parametric study, showing the effect of reactor coil and furnace wall emissive properties on the radiative heat transfer inside a tube-in-box geometry, confirms that a non-gray gas model is required to accurately model the behavior of high emissivity coatings. Even though a gray gas model suffices to capture the heat sink behavior of a reactor coil, a non-gray gas model that is able to account for the absorption and re-emission in specific bands is necessary to accurately model the benefits of applying a high emissivity coating on the furnace wall.


Author(s):  
K.G. Moloko ◽  
J.W. van der Merwe

SYNOPSIS Furnace wall tubes from 600 MW subcritical boilers at three coal-fired power stations were sampled and the fireside deposits examined to determine the mechanism of fireside corrosion. This involved an in-depth investigation into the morphology and composition of the fireside deposits and the conditions of the furnace that enable this type of attack. SEM-EDS analysis revealed high concentrations of oxygen, iron, and sulphur, QEMSCAN and XRD analyses identified the presence of Fe3O4, Fe2O3, FeS, and FeS2. Differential thermal analysis showed thermal activities at temperatures of 500-600°C, 900-1100°C, and 1100-1250°C, which are associated, respectively, with FeS2 oxidation to FeS and Fe2O3, at 475-525°C, formation of aluminosilicates at 925-1100°C, and melting of FeS around 1190°C. The absence of sodium and potassium eliminates the contribution of molten alkali sulphates to the corrosion. The consistent coexistence of iron sulphide and iron oxide is indicative of the substoichiometric conditions in the furnace, while the detection of pyrite suggests that the coal is not completely combusted, which points to a poor combustion process. These observations were affirmed by gas analysis at one of the stations, where very high levels of carbon monoxide were measured at the furnace wall (> 14 000 ppm) and furnace exit (> 3500 ppm). The high CO concentrations are indicative of limited combustion caused by limited O2. These reducing conditions promote the formation of FeS-rich deposit, which is the corrosive species responsible for degradation. Keywords: fireside corrosion, sulphidation, coal-fired boiler, furnace wall tubes.


Furnaces are most commonly used for melting of Ferrous Metals and its alloy materials. Induction furnaces use Electrical Power so that they are more advantageous as no fuel is required. It is a very critical problem to find life span of Induction Melting Furnace Wall under thermal load variation. The life cycle of induction furnace refractory wall is a variable as minor variation is always present due to effect of skill of workers and many other factors. The life cycle of furnace wall will vary minor with some miscellaneous factors and cannot be justified as a single value always. The probability concept is utilized here in the forecast of life cycle calculation to justify the miscellaneous factors effected for the damage of the induction furnace refractory wall. The probability concept initially defines a minimum life of induction furnace wall for a certain case then it is assumed to vary with different probability as given below. So, all the cases of induction furnace wall are having minimum life always but some cases of induction furnace wall are having much longer life. It is due to effect from many miscellaneous factors like skills of workers, efficiency of workers, raw material quality used for construction of wall, tools applied for ramming of it, row material employed for melting, etc.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


Author(s):  
A. S. Klimov ◽  
R. T. Emelyanov ◽  
A. F. Aleksandrov ◽  
V. A. Taranov

This article deals with the improvement of thermal efficiency of heating boilers with furnace wall waterflow. During one cycle in a PK-38 boiler the average level of the heat flow decreases by 25–30 %. The incident heat flux is measured with a thermal probe which, however, gives a large error in the measurement results. Experiments show that the error depends on the penetration of the thermal probe into the outer surface of thermal zone as well as on cavities in sealing the thermal probe, and different thermophysical properties of the latter and metal material of the heating surface. The accuracy of the measured parameters is affected by the thermal probe sealing. It is found that the distortion of temperature fields is more significant at the lower boundary of the thermal probe junction at frequently used sealing. Studies show that the waterflow leads to the restoration of local coefficients of thermal efficiency to the previous values. The obtained results can be used in boiler design and allow improving the measurement methods for thermal efficiency of heating boilers with furnace wall waterflow.


Sign in / Sign up

Export Citation Format

Share Document