scholarly journals Rapid and Repetitive Inactivation of SARS‐CoV‐2 and Human Coronavirus on Self‐Disinfecting Anionic Polymers

2021 ◽  
pp. 2003503
Author(s):  
Bharadwaja S.T. Peddinti ◽  
Sierra N. Downs ◽  
Jiaqi Yan ◽  
Steven D. Smith ◽  
Reza A. Ghiladi ◽  
...  
2010 ◽  
Vol 37 (8) ◽  
pp. 871-880 ◽  
Author(s):  
Li SUN ◽  
Yu-Dong YANG ◽  
Dian-Bo LIU ◽  
Ya-Ling XING ◽  
Xiao-Juan CHEN ◽  
...  

1974 ◽  
Vol 9 (1) ◽  
pp. 302-314
Author(s):  
André Hade ◽  
Acher Elcabetz

Abstract Waste waters from petroleum refineries can be considered as a ternary-like system, the components of which have been characterized. They are: the alkaline liquor, the hydrocarbon rich oil in suspension and the silica rich solid also in suspension. The parameters controlling the destabilization and the flocculation of these suspensions have been studied by light transmittance and electrophoretic mobility. Rate of flocculation, critical coagulation concentration (CCC) , critical restabilization concentration and optimum flocculation conditions have been determined for different combinations of added polyelectrolytes and/or simple electrolytes. Among eleven different polyelectrolytes, four of the cationic type were selected for their property to flocculate the suspension. It has been shown that an excess of polyelectrolyte brings about the restabilization of the particules. No flocculation has been observed for any of the anionic polymers tested. Simple electrolytes are found to obey the Schulze-Hardy rule in their flocculation capacity. Various combinations of a polyelectrolyte with a simple salt lead to a lower CCC together with a broader concentration range between destabilization and restabilization. It is concluded that this binary suspension behaved essentially like a classical lyophobic sol.


2020 ◽  
Author(s):  
Alan T Evangelista

UNSTRUCTURED The seasonality of influenza viruses and endemic human coronaviruses was tracked over an 8-year period to assess key epidemiologic reduction points in disease incidence for an urban area in the northeast United States. Patients admitted to a pediatric hospital with worsening respiratory symptoms were tested using a multiplex PCR assay from nasopharyngeal swabs. The additive seasonal effects of outdoor temperatures and indoor relative humidity (RH) were evaluated. The 8-year average peak activity of human coronaviruses occurred in the first week of January, when droplet and contact transmission was enabled by the low indoor RH of 20-30%. Previous studies have shown that an increase in RH to 50% has been associated with markedly reduced viability and transmission of influenza virus and animal coronaviruses. As disease incidence was reduced by 50% in early March, to 75% in early April, to greater than 99% at the end of April, a relationship was observed from colder temperatures in January with a low indoor RH to a gradual increase in outdoor temperatures in April with an indoor RH of 45-50%. As a lipid-bound, enveloped virus with similar size characteristics to endemic human coronaviruses, SARS-CoV-2 should be subject to the same dynamics of reduced viability and transmission with increased humidity. In addition to the major role of social distancing, the transition from lower to higher indoor RH with increasing outdoor temperatures could have an additive effect on the decrease in SARS-CoV-2 cases in May. Over the 8-year period of this study, human coronavirus activity was either zero or >99% reduction in the months of June through September, and the implication would be that SARS-Cov-2 may follow a similar pattern. INTERNATIONAL REGISTERED REPORT RR2-doi.org/10.1101/2020.05.15.20103416


2020 ◽  
Vol 13 (11) ◽  
Author(s):  
Franca del Nonno ◽  
Andrea Frustaci ◽  
Romina Verardo ◽  
Cristina Chimenti ◽  
Emanuele Nicastri ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 769-785 ◽  
Author(s):  
Erwan Sallard ◽  
José Halloy ◽  
Didier Casane ◽  
Etienne Decroly ◽  
Jacques van Helden

AbstractSARS-CoV-2 is a new human coronavirus (CoV), which emerged in China in late 2019 and is responsible for the global COVID-19 pandemic that caused more than 97 million infections and 2 million deaths in 12 months. Understanding the origin of this virus is an important issue, and it is necessary to determine the mechanisms of viral dissemination in order to contain future epidemics. Based on phylogenetic inferences, sequence analysis and structure–function relationships of coronavirus proteins, informed by the knowledge currently available on the virus, we discuss the different scenarios on the origin—natural or synthetic—of the virus. The data currently available are not sufficient to firmly assert whether SARS-CoV2 results from a zoonotic emergence or from an accidental escape of a laboratory strain. This question needs to be solved because it has important consequences on the risk/benefit balance of our interactions with ecosystems, on intensive breeding of wild and domestic animals, on some laboratory practices and on scientific policy and biosafety regulations. Regardless of COVID-19 origin, studying the evolution of the molecular mechanisms involved in the emergence of pandemic viruses is essential to develop therapeutic and vaccine strategies and to prevent future zoonoses. This article is a translation and update of a French article published in Médecine/Sciences, August/September 2020 (10.1051/medsci/2020123).


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Andra Waagmeester ◽  
Egon L. Willighagen ◽  
Andrew I. Su ◽  
Martina Kutmon ◽  
Jose Emilio Labra Gayo ◽  
...  

Abstract Background Pandemics, even more than other medical problems, require swift integration of knowledge. When caused by a new virus, understanding the underlying biology may help finding solutions. In a setting where there are a large number of loosely related projects and initiatives, we need common ground, also known as a “commons.” Wikidata, a public knowledge graph aligned with Wikipedia, is such a commons and uses unique identifiers to link knowledge in other knowledge bases. However, Wikidata may not always have the right schema for the urgent questions. In this paper, we address this problem by showing how a data schema required for the integration can be modeled with entity schemas represented by Shape Expressions. Results As a telling example, we describe the process of aligning resources on the genomes and proteomes of the SARS-CoV-2 virus and related viruses as well as how Shape Expressions can be defined for Wikidata to model the knowledge, helping others studying the SARS-CoV-2 pandemic. How this model can be used to make data between various resources interoperable is demonstrated by integrating data from NCBI (National Center for Biotechnology Information) Taxonomy, NCBI Genes, UniProt, and WikiPathways. Based on that model, a set of automated applications or bots were written for regular updates of these sources in Wikidata and added to a platform for automatically running these updates. Conclusions Although this workflow is developed and applied in the context of the COVID-19 pandemic, to demonstrate its broader applicability it was also applied to other human coronaviruses (MERS, SARS, human coronavirus NL63, human coronavirus 229E, human coronavirus HKU1, human coronavirus OC4).


Sign in / Sign up

Export Citation Format

Share Document