Realizing High‐Energy and Stable Wire‐Type Batteries with Flexible Lithium–Metal Composite Yarns

2021 ◽  
pp. 2101809
Author(s):  
Yuan Gao ◽  
Hong Hu ◽  
Jian Chang ◽  
Qiyao Huang ◽  
Qiuna Zhuang ◽  
...  
2020 ◽  
Author(s):  
Urbi Pal ◽  
Fangfang Chen ◽  
Derick Gyabang ◽  
Thushan Pathirana ◽  
Binayak Roy ◽  
...  

We explore a novel ether aided superconcentrated ionic liquid electrolyte; a combination of ionic liquid, <i>N</i>-propyl-<i>N</i>-methylpyrrolidinium bis(fluorosulfonyl)imide (C<sub>3</sub>mpyrFSI) and ether solvent, <i>1,2</i> dimethoxy ethane (DME) with 3.2 mol/kg LiFSI salt, which offers an alternative ion-transport mechanism and improves the overall fluidity of the electrolyte. The molecular dynamics (MD) study reveals that the coordination environment of lithium in the ether aided ionic liquid system offers a coexistence of both the ether DME and FSI anion simultaneously and the absence of ‘free’, uncoordinated DME solvent. These structures lead to very fast kinetics and improved current density for lithium deposition-dissolution processes. Hence the electrolyte is used in a lithium metal battery against a high mass loading (~12 mg/cm<sup>2</sup>) LFP cathode which was cycled at a relatively high current rate of 1mA/cm<sup>2</sup> for 350 cycles without capacity fading and offered an overall coulombic efficiency of >99.8 %. Additionally, the rate performance demonstrated that this electrolyte is capable of passing current density as high as 7mA/cm<sup>2</sup> without any electrolytic decomposition and offers a superior capacity retention. We have also demonstrated an ‘anode free’ LFP-Cu cell which was cycled over 50 cycles and achieved an average coulombic efficiency of 98.74%. The coordination chemistry and (electro)chemical understanding as well as the excellent cycling stability collectively leads toward a breakthrough in realizing the practical applicability of this ether aided ionic liquid electrolytes in lithium metal battery applications, while delivering high energy density in a prototype cell.


InfoMat ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 155-174
Author(s):  
Yiyao Han ◽  
Bo Liu ◽  
Zhen Xiao ◽  
Wenkui Zhang ◽  
Xiuli Wang ◽  
...  

Author(s):  
Yuwei Chen ◽  
Ying Huang ◽  
Haoyu Fu ◽  
Yongmin Wu ◽  
Dongdong Zhang ◽  
...  

2021 ◽  
Author(s):  
Qiang Ma ◽  
Junpei Yue ◽  
Min Fan ◽  
Shuang-Jie Tan ◽  
Juan Zhang ◽  
...  

2018 ◽  
Vol 54 (50) ◽  
pp. 6648-6661 ◽  
Author(s):  
Linlin Li ◽  
Siyuan Li ◽  
Yingying Lu

We describe the challenges of high-energy lithium-metal batteries and outline the future directions that are expected to drive their progress.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zheng ◽  
Feng Guo ◽  
Tuo Kang ◽  
Yingzhu Fan ◽  
Wei Gu ◽  
...  

AbstractLithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density. However, it suffers from poor cycling stability because of its high reactivity with liquid electrolytes. Therefore, continuous efforts have been put into improving the cycling Coulombic efficiency (CE) to extend the lifespan of the lithium metal negative electrode. Herein, we report that using dual-salt additives of LiPF6 and LiNO3 in an ether solvent-based electrolyte can significantly improve the cycling stability and rate capability of a Li-carbon (Li-CNT) composite. As a result, an average cycling CE as high as 99.30% was obtained for the Li-CNT at a current density of 2.5 mA cm–2 and an negative electrode to positive electrode capacity (N/P) ratio of 2. The cycling stability and rate capability enhancement of the Li-CNT negative electrode could be attributed to the formation of a better solid electrolyte interphase layer that contains both inorganic components and organic polyether. The former component mainly originates from the decomposition of the LiNO3 additive, while the latter comes from the LiPF6-induced ring-opening polymerization of the ether solvent. This novel surface chemistry significantly improves the CE of Li negative electrode, revealing its importance for the practical application of lithium metal batteries.


Author(s):  
Ingeborg Treu Røe ◽  
Sondre K. Schnell

Dendrite growth on the lithium metal anode still obstructs a widespread commercialization of high energy density lithium metal batteries. In this work, we investigate how the crystal structure of the...


Author(s):  
Naiqing Zhang ◽  
Xiaojie Shen ◽  
Guangyu Zhao ◽  
Xianbo Yu ◽  
Huihuang Huang ◽  
...  

Undesirable lithium dendrite growth limits the application of lithium metal anode in high-energy storage batteries. Here, multifunctional SnSe-C composite modified 3D scaffolds is constructed to achieve dendrite-free lithium deposition. During...


Author(s):  
Sha Fu ◽  
Lan-Lan Zuo ◽  
Peng-Sheng Zhou ◽  
Xue-Jiao Liu ◽  
Qiang Ma ◽  
...  

Lithium metal batteries (LMBs) as the next generation promising high energy density alternatives among electrochemical storage technologies have received worldwide attention. However, the incompatibility between metallic lithium and traditional liquid...


Sign in / Sign up

Export Citation Format

Share Document