Long‐term influence of phosphorus fertilization on organic carbon and nitrogen in soil aggregates under no‐till corn–wheat–soybean rotations

2020 ◽  
Vol 112 (4) ◽  
pp. 2519-2534 ◽  
Author(s):  
Sangeeta Bansal ◽  
Xinhua Yin ◽  
Hubert J. Savoy ◽  
Sindhu Jagadamma ◽  
Jaehoon Lee ◽  
...  
2016 ◽  
Vol 96 (4) ◽  
pp. 347-350 ◽  
Author(s):  
Elwin G. Smith ◽  
H. Henry Janzen ◽  
Lauren Scherloski ◽  
Francis J. Larney ◽  
Benjamin H. Ellert

After 47 yr of no-till and reduced summerfallow at Lethbridge, Alberta, soil organic carbon concentration and stocks increased 2.14 g kg−1 and 2.22 Mg ha−1, respectively, in the surface 7.5 cm layer. These findings confirmed the conservation value of reducing tillage and summerfallow. The annual changes were relatively small.


Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.


Pedosphere ◽  
2013 ◽  
Vol 23 (4) ◽  
pp. 542-548 ◽  
Author(s):  
Xian-Qing HOU ◽  
Rong LI ◽  
Zhi-Kuan JIA ◽  
Qing-Fang HAN

2021 ◽  
Vol 54 (2) ◽  
pp. 285-290
Author(s):  
V. A. Kholodov ◽  
V. P. Belobrov ◽  
N. V. Yaroslavtseva ◽  
M. A. Yashin ◽  
S. A. Yudin ◽  
...  

2019 ◽  
Vol 83 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Joao Arthur Antonangelo ◽  
Ruan Francisco Firmano ◽  
Luís Reynaldo Ferracciú Alleoni ◽  
Adilson Oliveira ◽  
Hailin Zhang

2020 ◽  
Vol 204 ◽  
pp. 104728 ◽  
Author(s):  
Camila R. Wuaden ◽  
Rodrigo S. Nicoloso ◽  
Evandro C. Barros ◽  
Roberto A. Grave

Sign in / Sign up

Export Citation Format

Share Document