Filtered two-fluid models of fluidized gas-particle flows: New constitutive relations

AIChE Journal ◽  
2013 ◽  
Vol 59 (9) ◽  
pp. 3265-3275 ◽  
Author(s):  
Christian C. Milioli ◽  
Fernando E. Milioli ◽  
William Holloway ◽  
Kapil Agrawal ◽  
Sankaran Sundaresan
AIChE Journal ◽  
2010 ◽  
Vol 57 (10) ◽  
pp. 2691-2707 ◽  
Author(s):  
Yesim Igci ◽  
Sankaran Sundaresan

2015 ◽  
Vol 284 ◽  
pp. 159-169 ◽  
Author(s):  
Shailesh S. Ozarkar ◽  
Xiaokang Yan ◽  
Shuyan Wang ◽  
Christian C. Milioli ◽  
Fernando E. Milioli ◽  
...  

Author(s):  
Wei Yao ◽  
Christophe Morel

In this paper, a multidimensional two-fluid model with additional turbulence k–ε equations is used to predict the two-phase parameters distribution in freon R12 boiling flow. The 3D module of the CATHARE code is used for numerical calculation. The DEBORA experiment has been chosen to evaluate our models. The radial profiles of the outlet parameters were measured by means of an optical probe. The comparison of the radial profiles of void fraction, liquid temperature, gas velocity and volumetric interfacial area at the end of the heated section shows that the multidimensional two-fluid model with proper constitutive relations can yield reasonably predicted results in boiling conditions. Sensitivity tests show that the turbulent dispersion force, which involves the void fraction gradient, plays an important role in determining the void fraction distribution; and the turbulence eddy viscosity is a significant factor to influence the liquid temperature distribution.


Author(s):  
Aurelia Chenu ◽  
Konstantin Mikityuk ◽  
Rakesh Chawla

In the framework of PSI’s FAST code system, the TRACE thermal-hydraulics code is being extended for representation of sodium two-phase flow. As the currently available version (v.5) is limited to the simulation of only single-phase sodium flow, its applicability range is not enough to study the behavior of a Sodium-cooled Fast Reactor (SFR) during a transient in which boiling is anticipated. The work reported here concerns the extension of the two-fluid models, which are available in TRACE for steam-water, to sodium two-phase flow simulation. The conventional correlations for ordinary gas-liquid flows are used as basis, with optional correlations specific to liquid metal when necessary. A number of new models for representation of the constitutive equations specific to sodium, with a particular emphasis on the interfacial transfer mechanisms, have been implemented and compared with the original closure models. As a first application, the extended TRACE code has been used to model experiments that simulate a loss-of-flow (LOF) accident in a SFR. The comparison of the computed results, with both the experimental data and SIMMER-III code predictions, has enabled validation of the capability of the modified TRACE code to predict sodium boiling onset, flow regimes, dryout, flow reversal, etc. The performed study is a first-of-a-kind application of the TRACE code to two-phase sodium flow. Other integral experiments are planned to be simulated to further develop and validate the two-phase sodium flow methodology.


Sign in / Sign up

Export Citation Format

Share Document