Voidage variation in packed beds at small column to particle diameter ratio

AIChE Journal ◽  
2003 ◽  
Vol 49 (8) ◽  
pp. 2022-2029 ◽  
Author(s):  
Arno de Klerk
Author(s):  
F. I. Molina-Herrera ◽  
C. O. Castillo-Araiza ◽  
H. Jiménez-Islas ◽  
F. López-Isunza

Abstract This is a theoretical study about the influence of turbulence on momentum and heat transport in a packed-bed with low tube to particle diameter ratio. The hydrodynamics is given here by the time-averaged Navier-Stokes equations including Darcy and Forchheimer terms, plus a κ-ε two-equation model to describe a 2D pseudo-homogeneous medium. For comparison, an equivalent conventional flow model has also been tested. Both models are coupled to a heat transport equation and they are solved using spatial discretization with orthogonal collocation, while the time derivative is discretized by an implicit Euler scheme. We compared the prediction of radial and axial temperature observations from a packed-bed at particle Reynolds numbers (Rep) of 630, 767, and 1000. The conventional flow model uses effective heat transport parameters: wall heat transfer coefficient (hw) and thermal conductivity (keff), whereas the turbulent flow model includes a turbulent thermal conductivity (kt), estimating hw via least-squares with Levenberg-Marquardt method. Although predictions of axial and radial measured temperature profiles with both models show small differences, the calculated radial profiles of the axial velocity component are very different. We demonstrate that the model that includes turbulence compares well with mass flux measurements at the packed-bed inlet, yielding an error of 0.77 % in mass flux balance at Rep = 630. We suggest that this approach can be used efficiently for the hydrodynamics characterization and design and scale-up of packed beds with low tube to particle diameter ratio in several industrial applications.


Author(s):  
Carlos O. Castillo-Araiza ◽  
Felipe Lopez-Isunza

In the last decade it has been a special interest to incorporate the hydrodynamics in packed bed reactor models. This seems to be important in the case of highly exothermic partial oxidation reactions normally performed in packed beds with low tube/particle diameter ratio (dt/dp< 5) because of the large void distributions in the radial and axial directions, which have a direct impact on the magnitude of radial, angular and axial profiles of the velocity field, and consequently on both, the temperature and concentration profiles in the catalytic reactor. A successful reactor model needs an adequate hydrodynamic description of the packed bed, and for this reason several models additionally incorporate empirical expressions to describe radial voidage profiles, and use viscous (Darcy) and inertial (Forchheimer) terms to account for gas-solid interactions, via Ergun's pressure drop equation. In several cases an effective viscosity parameter has also been used with the Brinkman's viscous term. The use of these various approaches introduce some uncertainty in the predicted results, as to which extent the use of a particular radial voidage expression, or the use of an effective viscosity parameter, yield reliable predictions of measured velocity profiles.In this work the predictions of radial velocity profiles in a packed bed with low tube to particle diameter ratio from six hydrodynamic models, derived from a general one, are compared. The calculations show that the use of an effective viscosity parameter to predict experimental data can be avoided, if the magnitude of the two parameters in Ergun's equation, related to viscous and inertial energy losses, are re-estimated from velocity measurements, for this particular packed bed. The predictions using both approaches adequately fit the experimental data, although the results are analyzed and discussed.


AIChE Journal ◽  
2000 ◽  
Vol 46 (5) ◽  
pp. 1084-1088 ◽  
Author(s):  
M. Winterberg ◽  
E. Tsotsas

1984 ◽  
Vol 27 (10) ◽  
pp. 1701-1713 ◽  
Author(s):  
Anthony G. Dixon ◽  
Michael A. DiCostanzo ◽  
Brian A. Soucy

Author(s):  
Genong Li ◽  
Chi-Yang Cheng ◽  
Aniruddha Mukhopadhyay ◽  
Yi Dai

Packed beds are the dominant reactor type for industrial heterogeneous catalytic reactions. Packing pattern affects the flow, heat and mass transfer characteristics within the beds. With the development of high performance computing and advances in CFD, it becomes possible to resolve flow/reactions in detail in packed beds, especially for beds with low tube-to-particle diameter ratio. In this paper a whole set of CFD solutions in dealing with such packed beds from packing, meshing, solving and post-processing is discussed. The solution process is illustrated by considering cylindrical beds packed with spherical balls. As an example, a plant-scale bed packed with about 1000 balls is simulated in the paper.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 689
Author(s):  
Thomas Eppinger ◽  
Nico Jurtz ◽  
Matthias Kraume

Fixed bed reactors are widely used in the chemical, nuclear and process industry. Due to the solid particle arrangement and its resulting non-homogeneous radial void fraction distribution, the heat transfer of this reactor type is inhibited, especially for fixed bed reactors with a small tube to particle diameter ratio. This work shows that, based on three-dimensional particle-resolved discrete element method (DEM) computational fluid dynamics (CFD) simulations, it is possible to reduce the maldistribution of mono-dispersed spherical particles near the reactor wall by the use of macroscopic wall structures. As a result, the lateral convection is significantly increased leading to a better radial heat transfer. This is investigated for different macroscopic wall structures, different air flow rates (Reynolds number Re = 16 ...16,000) and a variation of tube to particle diameter ratios (2.8, 4.8, 6.8, 8.8). An increase of the radial velocity of up to 40%, a reduction of the thermal entry length of 66% and an overall heat transfer increase of up to 120% are found.


Sign in / Sign up

Export Citation Format

Share Document