Absence of REM and altered NREM sleep in patients with spinocerebellar degeneration and slow saccades

1980 ◽  
Vol 7 (3) ◽  
pp. 277-280 ◽  
Author(s):  
Ivan Osorio ◽  
Robert B. Daroff
1976 ◽  
Vol 33 (4) ◽  
pp. 243-251 ◽  
Author(s):  
D. S. Zee ◽  
L. M. Optican ◽  
J. D. Cook ◽  
D. A. Robinson ◽  
W. K. Engel

1981 ◽  
Vol 9 (1) ◽  
pp. 95-96 ◽  
Author(s):  
J. Masdeu ◽  
S. Chokroverty ◽  
P. Gorelick

1984 ◽  
Vol 42 (3) ◽  
pp. 232-241 ◽  
Author(s):  
Enaytolah Niakan ◽  
Tulio E. Bertorini ◽  
Helio Lemmi ◽  
Milton Medeiros ◽  
Richard Drewry ◽  
...  

Four members of a family with spinocerebellar degeneration and slow saccadic eye movements are described. Detailed electrophysiological studies revealed abnormalities of neurological pathways not apparent clinically. The patients had slow saccades as mesasured electrophysiologically, as well as absence of rapid eye movements (REM) despite REM stages of sleep. These studies suggest that although saccadic eye movement and REM are mediated through the pontine paramedian reticular formation, other characteristics of REM sleep are not necessarily mediated through the same neurons.


2019 ◽  
Vol 33 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Elizabeth M. Stoakley ◽  
Karen J. Mathewson ◽  
Louis A. Schmidt ◽  
Kimberly A. Cote

Abstract. Resting respiratory sinus arrhythmia (RSA) is related to individual differences in waking affective style and self-regulation. However, little is known about the stability of RSA between sleep/wake stages or the relations between RSA during sleep and waking affective style. We examined resting RSA in 25 healthy undergraduates during the waking state and one night of sleep. Stability of cardiac variables across sleep/wake states was highly reliable within participants. As predicted, greater approach behavior and lower impulsivity were associated with higher RSA; these relations were evident in early night Non-REM (NREM) sleep, particularly in slow wave sleep (SWS). The current research extends previous findings by establishing stability of RSA within individuals between wake and sleep states, and by identifying SWS as an optimal period of measurement for relations between waking affective style and RSA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Schreiner ◽  
Marit Petzka ◽  
Tobias Staudigl ◽  
Bernhard P. Staresina

AbstractSleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Guang ◽  
Halen Baker ◽  
Orilia Ben-Yishay Nizri ◽  
Shimon Firman ◽  
Uri Werner-Reiss ◽  
...  

AbstractDeep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson’s disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A29-A30
Author(s):  
Michael Goldstein ◽  
Monika Haack ◽  
Janet Mullington

Abstract Introduction Prior research has reported NREM spectral EEG differences between individuals with insomnia and good-sleeper controls, including elevated high-frequency EEG power (beta/gamma bands, ~16-50Hz) and, to a lesser extent, elevations in sleep spindle parameters. However, the mechanisms driving these differences remain unclear. Harmonics have been observed in EEG data as spectral peaks at multiples of a fundamental frequency associated with an event (e.g., for a 14Hz spindle, the 2nd harmonic is expected to be a peak at 28Hz). Thus far, there has been very limited application of this idea of spectral harmonics to sleep spindles, even though these patterns can indeed be seen in some existing literature. We sought to build on this literature to apply spectral harmonic analysis to better understand differences between insomnia and good sleepers. Methods 15 individuals with insomnia disorder (DSM-5 criteria, 13 female, age 18–32 years) and 15 good-sleeper controls (matched for sex, age, and BMI) completed an overnight polysomnography recording in the laboratory and subsequent daytime testing. Insomnia diagnosis was determined by a board-certified sleep specialist, and exclusion criteria included psychiatric history within past 6 months, other sleep disorders, significant medical conditions, and medications with significant effects on inflammation, autonomic function, or other psychotropic effects. Results Consistent with prior studies, we found elevated sleep spindle density and fast sigma power (14-16Hz). Despite no difference in beta or gamma band power when averaged across NREM sleep, time-frequency analysis centered on the peaks of detected spindles revealed a phasic elevation in spectral power surrounding the 28Hz harmonic peak in the insomnia group, especially for spindles coupled with slow waves. We also observed an overall pattern of time-locked delay in the 28Hz harmonic peak, occurring approximately 40 msec after spindle peaks. Furthermore, we observed a 42Hz ‘3rd harmonic’ peak, not yet predicted by the existing modeling work, which was also elevated for insomnia. Conclusion In conjunction with existing mathematical modeling work that has linked sleep spindle harmonic peaks with thalamic relay nuclei as the primary generators of this EEG signature, these findings may enable novel insights into specific thalamocortical mechanisms of insomnia and non-restorative sleep. Support (if any) NIH 5T32HL007901-22


Sign in / Sign up

Export Citation Format

Share Document