Dynamically Deformable Cube-like Hydrogen-Bonding Networks in Water-Responsive Diamondoid Porous Organic Salts

2013 ◽  
Vol 52 (6) ◽  
pp. 1709-1712 ◽  
Author(s):  
Atsushi Yamamoto ◽  
Tomoya Hamada ◽  
Ichiro Hisaki ◽  
Mikiji Miyata ◽  
Norimitsu Tohnai
2013 ◽  
Vol 125 (6) ◽  
pp. 1753-1756 ◽  
Author(s):  
Atsushi Yamamoto ◽  
Tomoya Hamada ◽  
Ichiro Hisaki ◽  
Mikiji Miyata ◽  
Norimitsu Tohnai

2014 ◽  
Vol 70 (a1) ◽  
pp. C983-C983
Author(s):  
Norimitsu Tohnai ◽  
Atsushi Yamamoto ◽  
Ichiro Hisaki ◽  
Mikiji Miyata

Porous materials using organic molecules have attracted much attention due to their potential application such as gas absorption and so on. However, it is still difficult to construct porous structures from only simple organic molecules. Thus, we proposed a novel hierarchical method to construct porous structures. In this method, the first step is to build up molecular assemblies. These assemblies act to sustain porous structures with larger inclusion spaces. Then, the assemblies are accumulated by intermolecular interactions between assemblies to achieve both robustness and dynamics of the porous structures. We have previously reported organic salts composed of triphenylmethylamine (TPMA) and various sulfonic acid derivatives constructed unique molecular assemblies "supramolecular clusters" through cubic hydrogen-bonding networks. Here we demonstrate that TPMA and sulfonic acids having polyaromatic moieties give a new class of porous structures consisting of diamond networks, named as diamondoid porous organic salts (d-POSs). The supramolecular clusters are hierarchically accumulated by π–π interactions between the polyaromatic moieties to yield the d-POSs through formation of the diamond networks. Large steric hindrance of the clusters prevents the diamond networks from constructing highly interpenetrated structures, giving continuous open channels. It should be noted that the interpenetration degree of the diamond networks is controlled by tuning the bulkiness of the cluster with alteration of sulfonic acids.


2018 ◽  
Vol 24 (51) ◽  
pp. 13408-13412 ◽  
Author(s):  
Isabel Peña ◽  
Maria Eugenia Sanz ◽  
Elena R. Alonso ◽  
José L. Alonso

Small ◽  
2018 ◽  
Vol 14 (38) ◽  
pp. 1802307 ◽  
Author(s):  
Joanna Boucard ◽  
Camille Linot ◽  
Thibaut Blondy ◽  
Steven Nedellec ◽  
Philippe Hulin ◽  
...  

CrystEngComm ◽  
2016 ◽  
Vol 18 (1) ◽  
pp. 62-67
Author(s):  
Yoona Jang ◽  
Seo Yeon Yoo ◽  
Hye Rin Gu ◽  
Yu Jin Lee ◽  
Young Shin Cha ◽  
...  

6-Chloro-9-propyl-purin-2-amine (pr-GCl) forms two-dimensional hydrogen-bonded networks which in turn stack via π–π interactions, leading to the formation of bilayers that can accommodate organic guest molecules.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1882
Author(s):  
Wei Xia ◽  
Yingguo Bai ◽  
Pengjun Shi

Improving the substrate affinity and catalytic efficiency of β-glucosidase is necessary for better performance in the enzymatic saccharification of cellulosic biomass because of its ability to prevent cellobiose inhibition on cellulases. Bgl3A from Talaromyces leycettanus JCM12802, identified in our previous work, was considered a suitable candidate enzyme for efficient cellulose saccharification with higher catalytic efficiency on the natural substrate cellobiose compared with other β-glucosidase but showed insufficient substrate affinity. In this work, hydrophobic stacking interaction and hydrogen-bonding networks in the active center of Bgl3A were analyzed and rationally designed to strengthen substrate binding. Three vital residues, Met36, Phe66, and Glu168, which were supposed to influence substrate binding by stabilizing adjacent binding site, were chosen for mutagenesis. The results indicated that strengthening the hydrophobic interaction between stacking aromatic residue and the substrate, and stabilizing the hydrogen-bonding networks in the binding pocket could contribute to the stabilized substrate combination. Four dominant mutants, M36E, M36N, F66Y, and E168Q with significantly lower Km values and 1.4–2.3-fold catalytic efficiencies, were obtained. These findings may provide a valuable reference for the design of other β-glucosidases and even glycoside hydrolases.


Sign in / Sign up

Export Citation Format

Share Document