scholarly journals General α‐Amino 1,3,4‐Oxadiazole Synthesis via Late‐Stage Reductive Functionalization of Tertiary Amides and Lactams

Author(s):  
Daniel Matheau-Raven ◽  
Darren James Dixon
Keyword(s):  
2021 ◽  
Author(s):  
Daniel Matheau-Raven ◽  
Darren J. Dixon

An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol%) Vaska’s complex (IrCl(CO)(PPh<sub>3</sub>)<sub>2</sub>) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of structurally complex α-amino 1,3,4-oxadiazole architectures were efficiently accessed from diverse carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. Furthermore, the high chemoselectivity of the catalytic reductive activation step allowed the late-stage functionalization of 10 drug molecules, including the synthesis of novel heterodiazole-fused drug-drug conjugates.<br>


2021 ◽  
Author(s):  
Phillip Biallas ◽  
Ken Yamazaki ◽  
Darren J. Dixon

The synthesis of medicinally relevant α-difluoroalkylated amines by an iridium-catalyzed reductive alkylation of tertiary amides and lactams with difluoro-Reformatsky reagents, is described. This report features the introduction of various geminal difluoro-acetates and -acetamides as well as late stage derivatization of APIs, gram scale synthesis and downstream functionalizations.


2020 ◽  
Vol 11 (29) ◽  
pp. 7609-7614 ◽  
Author(s):  
Anne Schuhmacher ◽  
Tomoya Shiro ◽  
Sarah J. Ryan ◽  
Jeffrey W. Bode

Oxidative amidation of potassium acyltrifluoroborates (KATs) and amines via trifluoroborate iminiums (TIMs) delivers amides without coupling agents. This unusual approach to amides can be applied for the late-stage modification of bioactive molecules and for solid-phase peptide synthesis.


2021 ◽  
Author(s):  
Daniel Matheau-Raven ◽  
Darren J. Dixon

An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol%) Vaska’s complex (IrCl(CO)(PPh<sub>3</sub>)<sub>2</sub>) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of structurally complex α-amino 1,3,4-oxadiazole architectures were efficiently accessed from diverse carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. Furthermore, the high chemoselectivity of the catalytic reductive activation step allowed the late-stage functionalization of 10 drug molecules, including the synthesis of novel heterodiazole-fused drug-drug conjugates.<br>


Sign in / Sign up

Export Citation Format

Share Document