chlorinated polyethylene
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 24)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Haifeng Zhang ◽  
Lianzhu Zhou

Chemical enterprises are presently confronted with several difficult issues, including high power consumption, dangerous risk evaluation, and environmental regulation, all of which push industrial and academic institutions to develop new technologies, catalysts, and materials. Chlorinated polyethylene (CPE) is a polymer made by replacing H2 molecules in high density-(C2H4)n with chloride ions. CPE elastomers are made from a high density-(C2H4) backbone, and it was chlorinated using a free radical aqueous slurry technique. However, such fundamental polymer characteristics are insufficient to explain the performance characteristics of chlorinated polyethylene elastomers. Artificial intelligence (AI) has had a massive effect on all sections of the chemical sector, with tremendous potential that has revolutionized value supply chains, enhanced efficiency, and opened up new ways to the marketplace. As a result, in this research, we offer a methodology for the performance characterization of chlorinated polyethylene based on artificial intelligence (AI) and wireless network technology. The AI tools can search through enormous databases of known compounds and their attributes, leveraging the data to generate new possibilities. The dataset is first gathered. The chemical characterization is classified using the K -nearest neighbor (KNN) technique. This program was created to examine molecule structures and forecast the outcomes of new chemical reactions. Bayesian optimization is used to improve characterization performance. The proposed method will contribute to the future usage of AI in the chemical sector.


2022 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Fenghua Jiang ◽  
Menghui Wang ◽  
Jinfeng Ding ◽  
Wei Cao ◽  
Chengjun Sun

Wastewater treatment plants (WWTPs) are considered as one of the important sources of microplastics (MPs) in the marine environment. In this paper, the characteristics of MPs in the effluent discharged from five WWTPs in Qingdao, China, in winter and summer were analyzed. The results showed that only fibers and fragments were observed, with fibers as a dominant part. Rayon was the most domain polymer type, followed by Polyethylene terephthalate (PET) and chlorinated polyethylene (CPE). The average sizes of fiber MPs were 1010 ± 924 µm and 610 ± 691 µm in winter and summer, respectively. The contents of rayon were higher in summer than in winter. More small and transparent MPs were observed in summer. Rayon abundances ranged from 4.1 to 19.9 items/L and 33.3 to 116.7 items/L, with 12.3 ± 5.6 items/L and 67.6 ± 30.6 items/L as the average value in winter and in summer, respectively. The abundances of other polymer type MPs were 7.23~19.65 items/L with average value of 12.7 ± 4.7 items/L in winter and 12.0~20.0 items/L with 16.8 ± 4.7 items/L in summer. The daily emissions were estimated as 8.38 × 109~4.25 × 1010 items (9.2~27.8 kg) for rayon and 8.0 × 109~1.2 × 1010 items (7.6~5.3 kg) discharged for the other polymer type MPs from the five WWTPs. The results indicated that the seasonal variation of characteristics and emission of MPs in the effluent from WWTPs was mainly caused by increasing discharge of rayon, which may relate to people’s living habits and tourism activities.


2021 ◽  
pp. 131576
Author(s):  
Haifeng Zhou ◽  
Weihua Liu ◽  
Bowu Zhang ◽  
Yanling Xue ◽  
Zhongfeng Tang

Author(s):  
Ahmad hedayatpanah shaldehi ◽  
◽  
Marziyeh hedayatpanah shaldehi, shaldehi ◽  
Kolachahi Sabet Mohammad Taghi ◽  
Mohammad Saeed hedayatpanah shaldehi ◽  
...  

In given work a scientific base compatibility of polymers, produced by industry have been studied by revealing of thermodynamically regularities of polymer mixtures. The most significant thermodynamic regularities of the mixtures of polyolefin , produced by industry and heterochained polymers have been revealed and on this base the scientific bases of their compatibility have been developed for creation of multicomponent compositional materials with given complex of operating properties. Key words: polymer-polymer mixtures, chlorinated polyethylene (CPE), polymethylmetaacrylate (PMMA), polyethylene of low density (PELD), chlorcarboxylated polyethylene of low density (CCPE) chlorinated PELD (CPE), polyvinyl chloride (PVC), criteria of compatibility, chlorination, upper and lower critical temperature, specific holding of volume, Qibbs mixing energy, parameter of solubility, distribution of macromolecules, chlorine-chlorocontaining polymers, polar groups, thermodynamically compatibility, sorbate, gas-carrier.


Author(s):  
Shixaliyev Kerem Seyfi ◽  

In given work a scientific base compatibility of polymers, produced by industry have been studied by revealing of thermodynamically regularities of polymer mixtures. The most significant thermodynamic regularities of the mixtures of polyolefin , produced by industry and heterochained polymers have been revealed and on this base the scientific bases of their compatibility have been developed for creation of multicomponent compositional materials with given complex of operating properties. Key words: polymer-polymer mixtures, chlorinated polyethylene (CPE), polymethylmetaacrylate (PMMA), polyethylene of low density (PELD), chlorcarboxylated polyethylene of low density (CCPE) chlorinated PELD (CPE), polyvinyl chloride (PVC), criteria of compatibility, chlorination, upper and lower critical temperature, specific holding of volume, Qibbs mixing energy, parameter of solubility, distribution of macromolecules, chlorine-chlorocontaining polymers, polar groups, thermodynamically compatibility, sorbate, gas-carrier.


Sign in / Sign up

Export Citation Format

Share Document