Digital recording and automatic computation of film tensile stress–strain data

1961 ◽  
Vol 5 (17) ◽  
pp. 527-533 ◽  
Author(s):  
Gordon D. Patterson ◽  
Thomas D. Mecca
1995 ◽  
Vol 117 (4) ◽  
pp. 346-356 ◽  
Author(s):  
J. M. Bloom

This paper presents a brief history of the evolution of the Central Electricity Generating Board’s (CEGB) R-6 failure assessment diagram (FAD) procedure used in assessing defects in structural components. The reader is taken from the original CEGB R-6 FAD strip yield model to the deformation plastic failure assessment diagram (DPFAD), which is dependent on Ramberg-Osgood (R-O) materials to general stress-strain curves. An extension of the DPFAD approach is given which allows the use of material stress-strain data which do not follow the R-O equation such as stainless steel or carbon manganese steel. The validity of the new approach coined piecewise failure assessment diagram (PWFAD) is demonstrated through comparisons with the J-integral responses (expressed in terms of failure assessment diagram curves) for several cracked configurations of non-R-O materials. The examples were taken from both finite element and experimental results. The comparisons with these test cases demonstrate the accuracy of PWFAD. The use of PWFAD requires the availability of deformation plasticity J-integral solutions for several values of the strain-hardening exponent as well as uniaxial tensile stress-strain data at the temperature of interest. Lacking this information, the original R-O DPFAD approach using known engineering yield and ultimate strengths would give the best available approximation. However, it is strongly recommended that actual uniaxial tensile stress-strain data be used when available.


1973 ◽  
Vol 4 (11) ◽  
pp. 2665-2667 ◽  
Author(s):  
R. E. Reed-Hill ◽  
W. R. Cribb ◽  
S. N. Monteiro

1987 ◽  
Vol 60 (4) ◽  
pp. 742-760 ◽  
Author(s):  
N. Nakajima ◽  
J. J. Scobbo ◽  
E. R. Harrell

Abstract Ten different raw elastomers of varied chemical structure and Mooney viscosity were characterized with both tensile stress-strain behavior and dynamic shear behavior. The room temperature tensile stress-strain behavior was determined at strain rates of 0.239, 0.0892, and 0.00653 sec−1. These stress-strain data were reduced with a use of strain-time correspondence principle. The dynamic-shear behavior was observed over the frequency range from 10−2 to 102 rad/s. Double logarithmic Cole-Cole plots were used to characterize a relative degree of long branching and gel content. The reduced data of tensile stress-strain measurements were compared to the data of dynamic measurements. From this comparison, the sample containing a long-range crosslinked network was differentiated from that containing microgel.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


1986 ◽  
Vol 59 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Robert A. Hayes

Abstract A two-solvent method for determining the polymer-solvent interaction parameters independently of stress-strain data is described. The values obtained are much lower than those reported previously. Network densities calculated from swelling data and these interaction parameters are in good agreement with those calculated from the return portion of a hysteresis loop at high elongations.


Sign in / Sign up

Export Citation Format

Share Document