Curing of epoxy systems at sub-glass transition temperature

2006 ◽  
Vol 99 (6) ◽  
pp. 3669-3676 ◽  
Author(s):  
Irena Kroutilová ◽  
Libor Matějka ◽  
Antonín Sikora ◽  
Kamil Souček ◽  
Lubomír Staš
2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


2018 ◽  
Vol 59 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Katja Utaloff ◽  
Martin Heinz Kothmann ◽  
Michael Ciesielski ◽  
Manfred Döring ◽  
Thomas Neumeyer ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mikhail S. Fedoseev ◽  
Matvey S. Gruzdev ◽  
Lubov F. Derzhavinskaya

We report the curing process of epoxy oligomers by using isomethyltetrahydrophthalic anhydride catalyzed with 1-butyl-3-methylimidazolium salts. Catalytic action has been ascertained to be dependent on the nature of anion. Salts with(Br-)and(PO4-)anions appeared to be most active. Formation of salt adducts with epoxy resin and anhydride is shown. Polymers having higher values of strength and glass transition temperature—as compared with similar epoxy systems cured in the presence of tertiary amines as catalysts—are prepared.


Sign in / Sign up

Export Citation Format

Share Document