scholarly journals Studies on the Modification of Commercial Bisphenol-A-Based Epoxy Resin Using Different Multifunctional Epoxy Systems

2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.

2013 ◽  
Vol 853 ◽  
pp. 28-33
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Kung Liang Lin ◽  
Bor Kae Chang

Nanocomposite samples containing epoxy resin, glass fiber and 0~2 wt.% SiO2 nanopowder are prepared. The effects of SiO2 addition on the chemical resistance, glass transition temperature (Tg) and dynamic mechanical properties of the various samples are then observed. The chemical resistance of the nanocomposite specimens is compared with that of pure glass fiber/epoxy composite specimens when tested in acetone. The results show that the addition of 2 wt.% SiO2 increases the value of storage modulus by 1646MPa compared to that of the sample containing no silica nanopowder. Following immersion in acetone, all the nanocomposite specimen storage modulus decreased, but the addition of SiO2 reduced the decline, where the 2 wt. % samples decrease from 11.76% reduction to 0.84% and no significant change in the Tg compared to that of the sample with no silica nanopowder. Therefore, the experimental results indicate that 2 wt.% SiO2 addition is beneficial in improving chemical resistance, glass transition temperature, and dynamic mechanical properties of epoxy resin / glass fiber nanocomposites.


2013 ◽  
Vol 787 ◽  
pp. 408-412
Author(s):  
Jiao Yan Ai ◽  
Quan Chen ◽  
Xiao Bo Wang

Two kinds of polyester bis (p-hydroxybenzoic acid) butanediolatepolyester (BDPET) and bis (p-hydroxybenzoic acid) diethylene glycol (DGPET) were synthesized through melting transesterification reaction.Then the epoxy resins were modified with BDPET or DGPET,and nanoTiO2. The composites were characterized by DSC and SEM. The experimental results showed that the polyester can act as an effective toughening modifier for the epoxy resin. The mechanical properties of the composites were greatly improved and reached to the maxium at 4wt.%PET. The PET/EP system modified by adding suitable amount of nanoTiO2have better performance.The glass transition temperature (Tg) of PET/EP and nanoTiO2/PET/EP system improved about 20°Cand 27.8°C,respectively.


2011 ◽  
Vol 239-242 ◽  
pp. 3253-3256 ◽  
Author(s):  
Li Huo ◽  
Jun Gang Gao ◽  
Yong Gang Du

The curing, thermal and mechanical properties of bi-component system for bisphenol A epoxy resin (BPAER) modified by liquid crystalline Sulfonyl bis(4,1-phenylene)bis[4-(2,3-epoxypro pyloxy)benzoate] (p-SBPEPB), with 4,4'-diaminodiphenyl ether (DDE) as a curing agent, were investigated. The effect of the different liquid crystalline contents and the heating rate on curing reaction was discussed. The results show that the curing peak temperature decreases, curing rate increases, the glass transition temperature (Tg)and impact strength all increase with adding of liquid crystalline p-SBPEPB when the content is not over 8wt%.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 951 ◽  
Author(s):  
Yujing Tang ◽  
Chao Tang ◽  
Dong Hu ◽  
Yingang Gui

In this paper, a molecular dynamics simulation method was used to study the thermo-mechanical properties of cross-linked epoxy resins doped with nano silica particles that were grafted with 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino)ethylamino]-propyl-trimethoxysilane with different chain lengths. Firstly, a set of pure epoxy resin models, and four sets of SiO2/EP composite models were established. Then, a reasonable structure was obtained through a series of optimizations using molecular dynamics calculations. Next, the mechanical properties, hydrogen bond statistics, glass transition temperature, free volume fraction, and chain spacing of the five models were studied comparatively. The results show that doped nano silica particles of surfaces grafted with 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino)ethylamino]-propyl-trimethoxysilane with different chain lengths enhanced mechanical properties such as elastic modulus, shear modulus, and volume modulus obviously. The glass transition temperature increased by 15–16 K, 40–41 K, and 24–27 K, respectively. Finally, the data show that the cross-linked epoxy resin modified by nanoparticles grafted with N-(2-aminoethyl)-3-aminopropyl trimethoxysilane had better effects for improving thermo-mechanical properties by the comparatively studying the five groups of parameter models under the same conditions.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2240
Author(s):  
Tossapol Boonlert-uthai ◽  
Kentaro Taki ◽  
Anongnat Somwangthanaroj

This paper investigates the photo-initiated cationic polymerization of diglycidyl ether of bisphenol A (DGEBA) modified with bisphenol A (BPA)/polyethylene glycol (PEG) hyperbranched epoxy resin. The relationship between curing behavior, rheological, and thermal properties of the modified DGEBA is investigated using photo-differential scanning calorimetry (DSC) and photo-rheometer techniques. It is seen that the addition of the hyperbranched epoxy resin can increase UV conversion (αUV) and reduce gelation time (tgel). After photo-initiation polymerization (dark reaction) occurred, a second exothermic peak in the DSC thermogram takes place: namely, the occurrence of curing reaction owing to the activated monomer (AM) mechanism. Consequently, the glass transition temperature decreased, and at the same time, UV intensity increased which was due to the molecular weight between crosslinking points (Mc). Furthermore, the radius of gyration (Rg) of the network segment is determined via small-angle X-ray scattering (SAXS). It is noted that the higher the Mc, the larger the radius of gyration proves to be, resulting in low glass transition temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mikhail S. Fedoseev ◽  
Matvey S. Gruzdev ◽  
Lubov F. Derzhavinskaya

We report the curing process of epoxy oligomers by using isomethyltetrahydrophthalic anhydride catalyzed with 1-butyl-3-methylimidazolium salts. Catalytic action has been ascertained to be dependent on the nature of anion. Salts with(Br-)and(PO4-)anions appeared to be most active. Formation of salt adducts with epoxy resin and anhydride is shown. Polymers having higher values of strength and glass transition temperature—as compared with similar epoxy systems cured in the presence of tertiary amines as catalysts—are prepared.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1662
Author(s):  
Dongyuan Du ◽  
Yujing Tang ◽  
Lu Yang ◽  
Chao Tang

In order to study the influences of amino silane coupling agents with different grafting densities on the surface of nano silica on the thermomechanical properties of cross-linked epoxy resin, the molecular dynamics method was used to establish an amorphous model and calculate the mechanical properties, glass transition temperature, mean square displacement, hydrogen bond, binding energy, and radial distribution function of the composite models in this paper. The results are as follows: with the increase of the grafting density of an amino silane coupling agent on the surface of nano silica particles, the mechanical properties and glass transition temperature of epoxy resin showed a trend of increasing first and then decreasing. When the grafting ratio was 9%, the mechanical properties and glass transition temperature of the epoxy resin were the largest, and the glass transition temperature was increased by 41 K. At the same time, it was found that the higher the grafting ratio, the lower the chain movement ability, but the higher the binding energy. Besides, the binding energy between the nanoparticles of the grafted silane coupling agent and epoxy resin was negatively correlated with the temperature. By analyzing the hydrogen bond and radial distribution function, the results showed that the improvement of the grafted silane coupling agent on the surface of the nanoparticle to the thermomechanical properties of the epoxy resin was related to the OH···O and NH···O hydrogen bonds. The analysis results indicated that the proper grafting density should be selected based on the established model size, selected nanoparticle diameter, and epoxy resin materials in order to better improve the thermomechanical properties of the epoxy resin.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1548 ◽  
Author(s):  
Xingming Bian ◽  
Rui Tuo ◽  
Wei Yang ◽  
Yiran Zhang ◽  
Qing Xie ◽  
...  

Filled high thermal conductivity epoxy composite solves the problem of the low thermal conductivity of the epoxy resin itself, but the addition of the thermal conductive filler reduces the mechanical properties of the composite, which limits its application in the field of high voltage insulation. In this work, carboxyl-terminated butadiene nitrile liquid rubber (CTBN) was used to toughen the boron nitride-epoxy hybrid system, and the effects of different contents of CTBN on the mechanical properties, thermal conductivity, glass transition temperature, thermal stability, and dielectric properties of the composites were investigated. The results showed that when the content of CTBN was 5–15 wt.%, the CTBN formed a dispersed island structure in the epoxy resin matrix. The toughness of the composite increased by about 32%, the breakdown strength was improved, and the thermal conductivity was about 160% higher than that of pure epoxy resin. As the CTBN content increased, the glass transition temperature and thermal stability of the composite decreased and the dielectric constant and the dielectric loss increased. When the CTBN content is 10–15 wt.%, a toughened epoxy composite material with better comprehensive properties is obtained.


2016 ◽  
Vol 7 (17) ◽  
pp. 3003-3012 ◽  
Author(s):  
Yi Tan ◽  
Zhu-Bao Shao ◽  
Lei-Xiao Yu ◽  
Jia-Wei Long ◽  
Min Qi ◽  
...  

PAz-APP (as a monocomponent hardener) can bring excellent flame retardance and smoke suppression efficiency to the EP system without sacrificing the mechanical properties and glass transition temperature.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Lamya Zahir ◽  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Yuushou Nakayama ◽  
Takeshi Shiono ◽  
...  

An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications.


Sign in / Sign up

Export Citation Format

Share Document