Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: The effects of carbon black/silica (CB/Sil) hybrid filler and silane coupling agent, Si69

2011 ◽  
Vol 124 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Nik Z. Noriman ◽  
Hanafi Ismail
2021 ◽  
Author(s):  
Anand G ◽  
S. Vishvanathperumal

Abstract In the current research, investigation of natural rubber (NR)/styrene butadiene rubber (SBR) reinforced with carbon black (CB)/silica (Si) and with and without silane coupling agent (Si69) was analyzed. The total hybrid filler (CB/Si) concentration in the composite was fixed at 50 phr. Cure characteristics, mechanical properties and surface morphology were examined. The addition of a silane coupling agent improves the mechanical properties of NR/SBR rubber composites reinforced with CB/Si hybrid fillers. Compared with NR/SBR composites with Si69, addition of 0/50 CB/Si resulted in 53% decrease of tensile strength and 81% increase of elongation at break, superior to that of NR/SBR composites without Si69. When Si69 was used as a binding agent, the scanning electron micrograph (SEM) of the tensile fractured surface clearly shows the better dispersion of hybrid fillers in the NR/SBR matrix.


2013 ◽  
Vol 34 (10) ◽  
pp. 1575-1582 ◽  
Author(s):  
Liangliang Qu ◽  
Guozhu Yu ◽  
Ximing Xie ◽  
Lili Wang ◽  
Jing Li ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2815
Author(s):  
Sangwook Han ◽  
Bonyoung Gu ◽  
Sungwoo Kim ◽  
Seongrae Kim ◽  
Dalyong Mun ◽  
...  

The vulcanizate structure of filled compounds is affected by filler–rubber interactions (FRI) and the chemical crosslink density (CCD) of the matrix rubber. In particular, in filled compounds using a silica–silane system, FRIs due to silica–rubber coupling are a major influencing factor for the vulcanizate structure and physical properties. In this study, the effect of sulfur variation on the vulcanizate structure of silica-filled solution styrene–butadiene rubber compounds using a sulfide–silane coupling agent was studied. The vulcanizate structure according to sulfur variation was quantitatively analyzed using the swelling test and Flory–Rehner and Kraus equations. As the sulfur content increased, both FRI and the CCD increased, and it was confirmed that sulfur variation influenced the silica–rubber coupling efficiency through increased FRI. In addition, field emission scanning electron microscope images showed that increased FRI contributed to improvements in silica dispersion, abrasion resistance, and energy loss characteristics.


2020 ◽  
pp. 089270572093080
Author(s):  
MM Abdel-Aziz ◽  
Mona K Attia

The mechanical properties of γ-irradiated ethylene propylene diene monomer (EPDM)/high styrene-butadiene rubber (HSBR) blends were investigated with special reference to the effects of blend ratio. Among the blends, the one with 80/20 EPDM/HSBR has been found to exhibit the highest tensile, hardness, thermal, and abrasion properties. The effect of γ-irradiation dose on the mechanical properties namely tensile strength and elongation at break was investigated. The effect of silane coupling agent on the mentioned properties of the EPDM/HSBR blend was studied. The results showed that the mechanical and the thermal properties of the γ-irradiated EPDM/HSBR blend improved with the addition of the silane coupling agent due to the increase in the cross-linking density. The inclusion of both the 30 phr fumed silica and N, N- m-phenylenedimaleimide coagent in the 80/20 EPDM/HSBR nanocomposite irradiated to 150 kGy leads to a synergistic effect. Thermogravimetric analysis was carried out to analyze the thermal stability of the nanocomposites. The mechanical properties have been interpreted in terms of the morphology of the blends as attested by scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document