silica dispersion
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2698
Author(s):  
Donghyuk Kim ◽  
Gyeongdong Yeom ◽  
Hongil Joo ◽  
Byungkyu Ahn ◽  
Hyunjong Paik ◽  
...  

Recently, research conducted on tread compounds with liquid butadiene rubber (LqBR) have been conducted in the tire industry. In particular, the introduction of functional groups into LqBRs is expected to lower hysteresis loss caused by the free chain ends of LqBR. To study this, LqBRs with functional groups at different positions were synthesized. The occurrences of in-chain and chain-end functionalization of functionalized LqBRs (F-LqBRs) were confirmed, the microstructure and functionalization efficiency of F-LqBRs were calculated through the characterizations. This novel functionalization technology was beneficial not only to immobilizing the free chain ends of LqBRs to the surfaces of silica to decrease the number of free chain ends, but also chemically bonding the LqBR chains on the base polymer through a crosslinking reaction to enhance the filler-rubber interaction. The effects of the functional group position and number of the free chain ends on the physical properties and hysteresis of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with LqBR in silica-filled rubber compounds. The results showed that compounds that had applied DF-LqBR with both end functionalization performed better, including improving the silica dispersion, higher extraction resistance, and lower rolling resistance, than other F-LqBRs compounds.


Author(s):  
Woong Kim ◽  
Iz Muhammet ◽  
Donghyuk Kim ◽  
Il Jin Kim ◽  
Jong-Yeop Lee ◽  
...  

ABSTRACT Silica wet-masterbatch (WMB) is a well-known technique for manufacturing high-content, highly dispersed silica-filled compounds. Emulsion styrene–butadiene rubber (ESBR)/silica WMB offers several advantages, including excellent silica dispersion and reduced hysteresis, as compared with conventional dry masterbatch (DMB) compound. However, because of the residual emulsifiers in ESBR latex, it can exhibit a decrease in the crosslink density and reductions in its mechanical properties. Moreover, the abrasion resistance cannot be significantly enhanced because of the tradeoff between the improvement in silica dispersion and decrease in crosslink density. Accordingly, the objective of this study was to improve the silica dispersion and abrasion resistance of ESBR/silica WMB compounds by using liquid polybutadiene rubber (LqBR) extended WMB. In detail, three types of LqBR were emulsified to LqBR emulsions, and three types of LqBR extended WMBs were produced by co-coagulating ESBR latex, silane-modified silica, and the LqBR emulsion. A thorough characterization was conducted with emphasis on the silica content, cure characteristics, mechanical properties, abrasion resistance, and dynamic viscoelastic properties. Based on the results, silane-terminated LqBR extended WMB vulcanizate showed a 58% improvement in the 300% modulus, 48% reduced DIN abrasion loss, and a 23% improvement in dynamic properties.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1862
Author(s):  
Gyeongchan Ryu ◽  
Donghyuk Kim ◽  
Sanghoon Song ◽  
Kiwon Hwang ◽  
Byungkyu Ahn ◽  
...  

The demand for truck–bus radial (TBR) tires with enhanced fuel efficiency has grown in recent years. Many studies have investigated silica-filled natural rubber (NR) compounds to address these needs. However, silica-filled compounds offer inferior abrasion resistance compared to carbon black-filled compounds. Further, the use of NR as a base rubber can hinder silanization and coupling reactions due to interference by proteins and lipids. Improved silica dispersion be achieved without the use of a silane coupling agent by introducing epoxide groups to NR, which serve as silica-affinitive functional groups. Furthermore, the coupling reaction can be promoted by facilitating chemical interaction between the hydroxyl group of silica and the added epoxide groups. Thus, this study evaluated the properties of commercialized NR, ENR-25, and ENR-50 compounds with or without an added silane coupling agent, and the filler–rubber interaction was quantitatively calculated using vulcanizate structure analysis. The increased epoxide content, when the silane coupling agent was not used, improved silica dispersion, abrasion resistance, fuel efficiency, and wet grip. Once a basic level of silica dispersion was secured by using the silane coupling agent, both the abrasion resistance and wet grip improved with increasing epoxide content. Furthermore, the silane coupling agent could be partially replaced by ENR due to the high filler–rubber interaction between the ENR and silica. Therefore, epoxidation shows potential for resolving the issues associated with poor coupling reactions and abrasion resistance in silica-filled NR compounds.


Author(s):  
Jingwei Zhang ◽  
Jianmin Lu ◽  
Dongfang Wang ◽  
Bingyong Han

ABSTRACT To overcome the problem of fossil fuel depletion and associated environmental issues arising from the use of tire tread elastomers, a convenient, environmentally friendly, and highly efficient strategy was developed to prepare high-performance green solution polymerized styrene–butadiene rubber (SSBR)/silica nanocomposites by improving silica dispersion in the nonpolar polymer matrix via the introduction of a biobased nonpolar bottlebrush segment with two double bonds. Various elastomers containing biobased nonpolar bottlebrush β-myrcene segments were synthesized using an industrially robust anionic polymerization method. Results of robotic process automation, small-angle X-ray scattering, scanning electron microscopy, and transmission electron microscopy revealed that rubber with myrcene could significantly improve silica dispersibility and inhibit the strong filler–filler interactions, which are due to the formation of hydrogen bonding between the double bonds in the myrcene block and silanol groups on the silica surface and possibly to the spreading or infiltrating of myrcene bottlebrush segments onto silica. Furthermore, for the modified rubber, rolling resistance decreased by 41.7%, tear strength increased by 20.78%, and tensile strength increased by 77.8% with the elongation at break remained practically unchanged as compared with the unmodified silica/SSBR composite. On the basis of aforementioned assessment, we believe that silica-reinforced β-myrcene–based styrene–butadiene integrated rubber is a versatile and promising candidate for future tire tread elastomers.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 850
Author(s):  
Donghyuk Kim ◽  
Byungkyu Ahn ◽  
Kihyun Kim ◽  
JongYeop Lee ◽  
Il Jin Kim ◽  
...  

Liquid butadiene rubber (LqBR) which used as a processing aid play a vital role in the manufacturing of high-performance tire tread compounds. However, the studies on the effect of molecular weight, microstructure, and functionalization of LqBR on the properties of compounds are still insufficient. In this study, non-functionalized and center-functionalized liquid butadiene rubbers (N-LqBR and C-LqBR modified with ethoxysilyl group, respectively) were synthesized with low vinyl content and different molecular weights using anionic polymerization. In addition, LqBR was added to the silica-filled SSBR compounds as an alternative to treated distillate aromatic extract (TDAE) oil, and the effect of molecular weight and functionalization on the properties of the silica-filled SSBR compound was examined. C-LqBR showed a low Payne effect and Mooney viscosity because of improved silica dispersion due to the ethoxysilyl functional group. Furthermore, C-LqBR showed an increased crosslink density, improved mechanical properties, and reduced organic matter extraction compared to the N-LqBR compound. LqBR reduced the glass transition temperature (Tg) of the compound significantly, thereby improving snow traction and abrasion resistance compared to TDAE oil. Furthermore, the energy loss characteristics revealed that the hysteresis loss attributable to the free chain ends of LqBR was dominant.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 788
Author(s):  
Minghan Xu ◽  
Hao Xue ◽  
Wit Yee Tin ◽  
He Wang ◽  
Zhanfu Yong ◽  
...  

The viscoelastic behavior and reinforcement mechanism of polyethylene glycol (PEG) as an interfacial modifier in green tire tread composites were investigated in this study. The results show a clear positive effect on overall performance, and it significantly improved all the parameters of the “magic triangle” properties, the abrasion resistance, wet grip and ice traction, as well as the tire rolling resistance, simultaneously. For the preparation of the compounds, two mixing steps were used, as PEG 4000 was added on the second stage in order to avoid the competing reaction between silica/PEG and silanization. Fourier transform infrared spectroscopy (FTIR) confirmed that PEG could cover the silanol groups on the silica surface, resulting in the shortening of cure times and facilitating an increase of productivity. At low content of PEG, the strength was enhanced by the improvement of silica dispersion and the slippage of PEG chains, which are chemically and physically adsorbed on silica surface, but the use of excess PEG uncombined with silica in the compound, i.e., 5 phr, increases the possibility to shield the disulfide bonds of bis(3-(triethoxysilyl)-propyl) tetrasulfide (TESPT), and, thus, the properties were deteriorated. A constrained polymer model was proposed to explain the constrained chains of PEG in the silica-loaded composites on the basis of these results. An optimum PEG content is necessary for moderately strong matrix–filler interaction and, hence, for the enhancement in the mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2815
Author(s):  
Sangwook Han ◽  
Bonyoung Gu ◽  
Sungwoo Kim ◽  
Seongrae Kim ◽  
Dalyong Mun ◽  
...  

The vulcanizate structure of filled compounds is affected by filler–rubber interactions (FRI) and the chemical crosslink density (CCD) of the matrix rubber. In particular, in filled compounds using a silica–silane system, FRIs due to silica–rubber coupling are a major influencing factor for the vulcanizate structure and physical properties. In this study, the effect of sulfur variation on the vulcanizate structure of silica-filled solution styrene–butadiene rubber compounds using a sulfide–silane coupling agent was studied. The vulcanizate structure according to sulfur variation was quantitatively analyzed using the swelling test and Flory–Rehner and Kraus equations. As the sulfur content increased, both FRI and the CCD increased, and it was confirmed that sulfur variation influenced the silica–rubber coupling efficiency through increased FRI. In addition, field emission scanning electron microscope images showed that increased FRI contributed to improvements in silica dispersion, abrasion resistance, and energy loss characteristics.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2763
Author(s):  
Munir Hussain ◽  
Sohail Yasin ◽  
Hafeezullah Memon ◽  
Zhiyun Li ◽  
Xinpeng Fan ◽  
...  

In this paper we designed greener rubber nanocomposites exhibiting high crosslinking density, and excellent mechanical and thermal properties, with a potential application in technical fields including high-strength and heat-resistance products. Herein 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) ionic liquid was combined with silane coupling agent to formulate the nanocomposites. The impact of [EMIM]OAc on silica dispersion in a nitrile rubber (NBR) matrix was investigated by a transmission electron microscope and scanning electron microscopy. The combined use of the ionic liquid and silane in an NBR/silica system facilitates the homogeneous dispersion of the silica volume fraction (φ) from 0.041 to 0.177 and enhances crosslinking density of the matrix up to three-fold in comparison with neat NBR, and also it is beneficial for solving the risks of alcohol emission and ignition during the rubber manufacturing. The introduction of ionic liquid greatly improves the mechanical strength (9.7 MPa) with respect to neat NBR vulcanizate, especially at high temperatures e.g., 100 °C. Furthermore, it impacts on rheological behaviors of the nanocomposites and tends to reduce energy dissipation for the vulcanizates under large amplitude dynamic shear deformation.


2020 ◽  
Vol 84 ◽  
pp. 106350 ◽  
Author(s):  
Woong Kim ◽  
Eunho Yu ◽  
Gyeongchan Ryu ◽  
Doil Kim ◽  
Changseok Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document