Optimization of dosing and mixing time through fabrication of high internal phase emulsion (HIPE) polymerization based adsorbents for use in purification of oil in water contaminated wastewater

2020 ◽  
Vol 137 (34) ◽  
pp. 49000
Author(s):  
Ahmed G. Soliman ◽  
Ahmed M.A. El Naggar ◽  
Mahmoud R. Noor El‐Din ◽  
Ahmed M. Ramadan ◽  
Mohamed A. Youssef
2019 ◽  
Vol 25 (14) ◽  
pp. 1616-1622 ◽  
Author(s):  
Gabriela Muniz Félix Araújo ◽  
Gabriela Muniz Félix Araújo ◽  
Alana Rafaela Albuquerque Barros ◽  
Alana Rafaela Albuquerque Barros ◽  
João Augusto Oshiro-Junior ◽  
...  

Leishmaniasis is one of the most neglected diseases in the world. Its most severe clinical form, called visceral, if left untreated, can be fatal. Conventional therapy is based on the use of pentavalent antimonials and includes amphotericin B (AmB) as a second-choice drug. The micellar formulation of AmB, although effective, is associated with acute and chronic toxicity. Commercially-available lipid formulations emerged to overcome such drawbacks, but their high cost limits their widespread use. Drug delivery systems such as nanoemulsions (NE) have proven ability to solubilize hydrophobic compounds, improve absorption and bioavailability, increase efficacy and reduce toxicity of encapsulated drugs. NE become even more attractive because they are inexpensive and easy to prepare. The aim of this work was to incorporate AmB in NE prepared by sonicating a mixture of surfactants, Kolliphor® HS15 (KHS15) and Brij® 52, and an oil, isopropyl myristate. NE exhibited neutral pH, conductivity values consistent with oil in water systems, spherical structures with negative Zeta potential value, monomodal size distribution and average diameter of drug-containing droplets ranging from 33 to 132 nm. AmB did not modify the thermal behavior of the system, likely due to its dispersion in the internal phase. Statistically similar antileishmanial activity of AmB-loaded NE to that of AmB micellar formulation suggests further exploring them in terms of toxicity and effectiveness against amastigotes, with the aim of offering an alternative to treat visceral leishmaniasis.


2020 ◽  
Vol 138 (11) ◽  
pp. 50019
Author(s):  
Xuehui Gong ◽  
Boran Zhao ◽  
Ica Manas‐Zloczower ◽  
Donald L. Feke

2019 ◽  
Vol 10 (9) ◽  
pp. 5446-5460 ◽  
Author(s):  
Chi Yan ◽  
David Julian McClements ◽  
Liqiang Zou ◽  
Wei Liu

A high internal phase emulsion (HIPE) was firstly fabricated with octenyl succinic anhydride modified starch through simple shear dispersion.


2014 ◽  
Vol 884-885 ◽  
pp. 186-189 ◽  
Author(s):  
San Zhu ◽  
Xiao Gang Luo ◽  
Li Bin Ma ◽  
Ya Nan Xue ◽  
Ning Cai ◽  
...  

Novel composite resins with dual absorption properties of water and oil are prepared by the polymerization of high internal phase emulsion (HIPEs) with n-butyl methacrylate as the external phase monomer and acrylamide as the internal phase monomer. The subsequent polymerization leads to the formation of water and oil dual-absorption composite resins. The morphology of porous structure and microcosmic phase separation after water/oil uptake is observed by scanning electron microscopy (SEM). The water and oil absorbency strongly depend on composition. The composites with saturated water uptake could absorb the chloroform again but cant absorb water if saturated with chloroform first. And the resins exhibit great reusability, keeping almost constant absorbency. The present methodology could be a potential approach to obtain amphiphilic composites, which possess potential applications in the bioengineering, medical and industrial fields.


2015 ◽  
Vol 3 (20) ◽  
pp. 4118-4122 ◽  
Author(s):  
Bernice H. L. Oh ◽  
Alexander Bismarck ◽  
Mary B. Chan-Park

By varying the oligolysine units of chitosan-graft-oligoNIPAM-graft-oligolysine, high internal phase emulsions of different droplet sizes can be stabilized which can subsequently serve as template for macroporous polymers.


Sign in / Sign up

Export Citation Format

Share Document