Magnesium hydroxide nanoparticles grafted by DOPO and its flame retardancy in ethylene‐vinyl acetate copolymers

2020 ◽  
Vol 138 (1) ◽  
pp. 49607
Author(s):  
Tingting Liu ◽  
Feng Wang ◽  
Gen Li ◽  
Peng Liu ◽  
Chong Gao ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1028 ◽  
Author(s):  
Zhi-Qi Liu ◽  
Zhi Li ◽  
Yun-Xian Yang ◽  
Yan-Ling Zhang ◽  
Xin Wen ◽  
...  

This study was aimed at investigating the effects of carbon nanomaterials with different geometries on improving the flame retardancy of magnesium hydroxide–filled ethylene-vinyl acetate (EM). The thermal stability and flame retardancy were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, and cone calorimeter test (CCT). The in situ temperature monitoring system and interrupted combustion offered direct evidence to link flame retardancy and composite structure. Results demonstrated that carbon nanomaterials enhanced the thermal stability and fire safety of EM. The geometry of carbon nanomaterials played a key role in synergistic flame retardancy of EM, with the flame-retardant order of carbon nanotube > nanoscale carbon black > graphene. Based on an online temperature monitoring system and interrupted combustion test, one-dimensional carbon nanotube was more inclined to form the network structure synergistically with magnesium hydroxide in ethylene-vinyl acetate, which facilitated the generation of more continuous char structure during combustion. In parallel, the mechanical property was characterized by a tensile test and dynamic mechanical analysis (DMA). The incorporation of carbon nanomaterials presented a limited effect on the mechanical properties of the EM system.


Sign in / Sign up

Export Citation Format

Share Document