Low‐cycle fatigue behavior of flexible 3D printed thermoplastic polyurethane blends for thermal energy storage/release applications

2020 ◽  
Vol 138 (3) ◽  
pp. 49704
Author(s):  
Daniele Rigotti ◽  
Andrea Dorigato ◽  
Alessandro Pegoretti
2020 ◽  
Vol 33 ◽  
pp. 1979-1983
Author(s):  
V.A. Lvov ◽  
F.S. Senatov ◽  
A.A. Stepashkin ◽  
A.A. Veveris ◽  
M.D. Pavlov ◽  
...  

Author(s):  
Yuchen Mao ◽  
Takuya Miyazaki ◽  
Kohei Sakai ◽  
Jin Gong ◽  
Meifang Zhu ◽  
...  

Most of the phase change materials (PCMs) have been limited to use as functional additions or sealed in containers, and extra auxiliary equipment or supporting matrix is needed. The emergence of 3D printing technique has dramatically advanced the developments of materials and simplified production processes. This study focuses on a novel strategy to model thermal energy storage crystalline gels with three-dimensional architecture directly from liquid resin without supporting materials through light-induced polymerization 3D printing technique. A mask-projection stereolithography printer was used to measure the 3D printing test, and the printable characters of crystalline thermal energy storage P(SA-DMAA) gels with different molar ratios were evaluated. For the P(SA-DMMA) gels with small fraction of SA, the 3D fabrication was realized with higher printing precision both on mili- and micro-meter scales. As a comparison of 3D printed samples, P(SA-DMAA) gels made by other two methods, post-UV curing treatment after 3D printing and UV curing using conventional mold, were prepared. The 3D printed P(SA-DMAA) gels shown high crystallinity. Post–UV curing treatment was beneficial to full curing of 3D printed gels, but did not lead to the further improvement of crystal structure to get higher crystallinity. The P(SA-DMAA) crystalline gel having the highest energy storage enthalpy that reached 69.6 J·g−1 was developed. Its good thermoregulation property in the temperature range from 25 to 40 °C was proved. The P(SA-DMAA) gels are feasible for practical applications as one kind of 3D printing material with thermal energy storage and thermoregulation functionality.


2016 ◽  
Vol 97 ◽  
pp. 193-200 ◽  
Author(s):  
F.S. Senatov ◽  
K.V. Niaza ◽  
A.A. Stepashkin ◽  
S.D. Kaloshkin

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2599
Author(s):  
Wenjin Ding ◽  
Yuan Shi ◽  
Markus Braun ◽  
Fiona Kessel ◽  
Martin Frieß ◽  
...  

Oxide ceramics could be attractive high-temperature construction materials for critical structural parts in high-temperature molten salt thermal energy storage systems due to their excellent corrosion resistance and good mechanical properties. The 3D-printing technology allows the production of ceramic components with highly complex geometries, and therefore extends their applications. In this work, 3D-printed ZrO2 and Al2O3 ceramics were immersed in molten MgCl2/KCl/NaCl under argon or exposed in argon without molten chlorides at 700 °C for 600 h. Their material properties and microstructure were investigated through three-point-bend (3PB) testing and material analysis with SEM-EDX and XRD. The results show that the 3D-printed Al2O3 maintained its mechanical property after exposure in the strongly corrosive molten chloride salt. The 3D-printed ZrO2 had an enhanced 3PB strength after molten salt exposure, whereas no change was observed after exposure in argon at 700 °C. The material analysis shows that some of the ZrO2 on the sample surface changed its crystal structure and shape (T→M phase transformation) after molten salt exposure, which could be the reason for the enhanced 3PB strength. The thermodynamic calculation shows that the T→M transformation could be caused by the reaction of the Y2O3-stabilized ZrO2 with MgCl2 (mainly Y2O3 and ZrO2 with gaseous MgCl2). In conclusion, the 3D-printed ZrO2 and Al2O3 ceramics have excellent compatibility with corrosive molten chlorides at high temperatures and thus show a sound application potential as construction materials for molten chlorides.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1117 ◽  
Author(s):  
Yuchen Mao ◽  
Takuya Miyazaki ◽  
Kohei Sakai ◽  
Jin Gong ◽  
Meifang Zhu ◽  
...  

Most of the phase change materials (PCMs) have been limited to use as functional additions or sealed in containers, and extra auxiliary equipment or supporting matrix is needed. The emergence of 3D printing technique has dramatically advanced the developments of materials and simplified production processes. This study focuses on a novel strategy to model thermal energy storage crystalline gels with three-dimensional architecture directly from liquid resin without supporting materials through light-induced polymerization 3D printing technique. A mask-projection stereolithography printer was used to measure the 3D printing test, and the printable characters of crystalline thermal energy storage P(SA-DMAA) gels with different molar ratios were evaluated. For the P(SA-DMMA) gels with a small fraction of SA, the 3D fabrication was realized with higher printing precision both on milli- and micro- meter scales. As a comparison of 3D printed samples, P(SA-DMAA) gels made by other two methods, post-UV curing treatment after 3D printing and UV curing using conventional mold, were prepared. The 3D printed P(SA-DMAA) gels shown high crystallinity. Post-UV curing treatment was beneficial to full curing of 3D printed gels, but did not lead to the further improvement of the crystal structure to get higher crystallinity. The P(SA-DMAA) crystalline gel having the highest energy storage enthalpy was developed, which reached 69.6 J·g−1. Its good thermoregulation property in the temperature range from 25 to 40 °C was proved. The P(SA-DMAA) gels are feasible for practical applications as one kind of 3D printing material with thermal energy storage and thermoregulation functionality.


Sign in / Sign up

Export Citation Format

Share Document