scholarly journals A 3D Printable Thermal Energy Storage Crystalline Gel Using Mask-Projection Stereolithography

Author(s):  
Yuchen Mao ◽  
Takuya Miyazaki ◽  
Kohei Sakai ◽  
Jin Gong ◽  
Meifang Zhu ◽  
...  

Most of the phase change materials (PCMs) have been limited to use as functional additions or sealed in containers, and extra auxiliary equipment or supporting matrix is needed. The emergence of 3D printing technique has dramatically advanced the developments of materials and simplified production processes. This study focuses on a novel strategy to model thermal energy storage crystalline gels with three-dimensional architecture directly from liquid resin without supporting materials through light-induced polymerization 3D printing technique. A mask-projection stereolithography printer was used to measure the 3D printing test, and the printable characters of crystalline thermal energy storage P(SA-DMAA) gels with different molar ratios were evaluated. For the P(SA-DMMA) gels with small fraction of SA, the 3D fabrication was realized with higher printing precision both on mili- and micro-meter scales. As a comparison of 3D printed samples, P(SA-DMAA) gels made by other two methods, post-UV curing treatment after 3D printing and UV curing using conventional mold, were prepared. The 3D printed P(SA-DMAA) gels shown high crystallinity. Post–UV curing treatment was beneficial to full curing of 3D printed gels, but did not lead to the further improvement of crystal structure to get higher crystallinity. The P(SA-DMAA) crystalline gel having the highest energy storage enthalpy that reached 69.6 J·g−1 was developed. Its good thermoregulation property in the temperature range from 25 to 40 °C was proved. The P(SA-DMAA) gels are feasible for practical applications as one kind of 3D printing material with thermal energy storage and thermoregulation functionality.

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1117 ◽  
Author(s):  
Yuchen Mao ◽  
Takuya Miyazaki ◽  
Kohei Sakai ◽  
Jin Gong ◽  
Meifang Zhu ◽  
...  

Most of the phase change materials (PCMs) have been limited to use as functional additions or sealed in containers, and extra auxiliary equipment or supporting matrix is needed. The emergence of 3D printing technique has dramatically advanced the developments of materials and simplified production processes. This study focuses on a novel strategy to model thermal energy storage crystalline gels with three-dimensional architecture directly from liquid resin without supporting materials through light-induced polymerization 3D printing technique. A mask-projection stereolithography printer was used to measure the 3D printing test, and the printable characters of crystalline thermal energy storage P(SA-DMAA) gels with different molar ratios were evaluated. For the P(SA-DMMA) gels with a small fraction of SA, the 3D fabrication was realized with higher printing precision both on milli- and micro- meter scales. As a comparison of 3D printed samples, P(SA-DMAA) gels made by other two methods, post-UV curing treatment after 3D printing and UV curing using conventional mold, were prepared. The 3D printed P(SA-DMAA) gels shown high crystallinity. Post-UV curing treatment was beneficial to full curing of 3D printed gels, but did not lead to the further improvement of the crystal structure to get higher crystallinity. The P(SA-DMAA) crystalline gel having the highest energy storage enthalpy was developed, which reached 69.6 J·g−1. Its good thermoregulation property in the temperature range from 25 to 40 °C was proved. The P(SA-DMAA) gels are feasible for practical applications as one kind of 3D printing material with thermal energy storage and thermoregulation functionality.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.


RSC Advances ◽  
2021 ◽  
Vol 11 (49) ◽  
pp. 30569-30573
Author(s):  
Kashif Nawaz ◽  
Thomas B. Freeman ◽  
Rafael M. Rodriguez ◽  
Sandra K. S. Boetcher

A composite HDPE/PCM filament for 3D printing thermal energy storage systems is naturally hydrophobic.


Nanoscale ◽  
2018 ◽  
Vol 10 (46) ◽  
pp. 21696-21702 ◽  
Author(s):  
Soomin Son ◽  
Pil-Hoon Jung ◽  
Jaemin Park ◽  
Dongwoo Chae ◽  
Daihong Huh ◽  
...  

ZnO-based hierarchical structures including nanoparticles (NPs), nanorods (NRs), and nanoflowers (NFs) on 3D-printed backbones were effectively fabricated via the combination of FDM 3D-printing technique and hydrothermal reaction.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2599
Author(s):  
Wenjin Ding ◽  
Yuan Shi ◽  
Markus Braun ◽  
Fiona Kessel ◽  
Martin Frieß ◽  
...  

Oxide ceramics could be attractive high-temperature construction materials for critical structural parts in high-temperature molten salt thermal energy storage systems due to their excellent corrosion resistance and good mechanical properties. The 3D-printing technology allows the production of ceramic components with highly complex geometries, and therefore extends their applications. In this work, 3D-printed ZrO2 and Al2O3 ceramics were immersed in molten MgCl2/KCl/NaCl under argon or exposed in argon without molten chlorides at 700 °C for 600 h. Their material properties and microstructure were investigated through three-point-bend (3PB) testing and material analysis with SEM-EDX and XRD. The results show that the 3D-printed Al2O3 maintained its mechanical property after exposure in the strongly corrosive molten chloride salt. The 3D-printed ZrO2 had an enhanced 3PB strength after molten salt exposure, whereas no change was observed after exposure in argon at 700 °C. The material analysis shows that some of the ZrO2 on the sample surface changed its crystal structure and shape (T→M phase transformation) after molten salt exposure, which could be the reason for the enhanced 3PB strength. The thermodynamic calculation shows that the T→M transformation could be caused by the reaction of the Y2O3-stabilized ZrO2 with MgCl2 (mainly Y2O3 and ZrO2 with gaseous MgCl2). In conclusion, the 3D-printed ZrO2 and Al2O3 ceramics have excellent compatibility with corrosive molten chlorides at high temperatures and thus show a sound application potential as construction materials for molten chlorides.


Author(s):  
Sushrut Richa

Abstract: Forearm fracture has many management related problems. In order to regain its function anatomical reduction and immobility is very necessary. Traditional cast is not a satisfactory cast as it is heavy, poorly ventilated and often causes fracture related complications. The paper deals with application of 3D printing technique for suitable cast for forearm rehabilitation. Novel 3D printed cast is light weighted, ventilated, custom fit, strong and waterproof and substantial improvement over conventional orthopaedic cast. With the development in technology, it is expected that the cost of fabrication and its manufacturing time will be greatly reduced in the coming future. Keywords: bone fracture, immobility, rehabilitation, 3D printing, orthopaedic cast


2021 ◽  
Vol 880 ◽  
pp. 97-102
Author(s):  
Ravivat Rugsaj ◽  
Chakrit Suvanjumrat

The spokes of airless tire or non-pneumatic tire (NPT) are normally made with thermoplastic polyurethane (TPU), which is highly elastic material, to replace inflation pressure in conventional pneumatic tire. However there are limitation in designing of complex spoke geometries due to difficulty in manufacturing process, which normally involve molding process. Recently, the 3D printing technique has been improved and can be used to create highly complex geometries with wide range of materials. However the mechanical properties of printed spoke structure using 3D printing technique are still required to design and development of NPT. This research aim to study the mechanical properties of TPU while varying in printing conditions. The specimens were prepared from actual NPT spoke using waterjet cutting technique and 3D printing technique according to the testing standard ASTM D412 and D638, respectively. The tensile tests were performed on the specimens with corresponding crosshead speed. The testing speed of 3D printed specimen were also varied to 100 and 200 mm/min to study the effects of strain rate on mechanical properties. The stress-strain relationships were obtained from tensile testing and the important mechanical properties were then evaluated. The mechanical properties of specimens prepared from actual NPT spokes and 3D printed specimens were then compared. The ultimate stress of specimens prepared from actual NPT spokes in radial direction and 3D printed specimens with 100% infill were found to be 32.92 and 25.47 MPa, respectively, while the breaking strain were found to be 12.98 and 10.87, respectively. Thus, the information obtained from this research can be used to ensure the possibility in creating NPT spoke using 3D printing technique based on elastic material such as TPU.


Sign in / Sign up

Export Citation Format

Share Document