Morphology of the carotid sinus wall in normotensive and spontaneously hypertensive rats

1987 ◽  
Vol 218 (4) ◽  
pp. 426-433 ◽  
Author(s):  
John T. Hansen
2012 ◽  
Vol 30 ◽  
pp. e229
Author(s):  
Fiona D. McBryde ◽  
Ana P.L. Abdala ◽  
Alex V. Gourine ◽  
Nepthali Marina ◽  
Emma B. Hendy ◽  
...  

2011 ◽  
Vol 300 (1) ◽  
pp. R155-R165 ◽  
Author(s):  
Toru Kawada ◽  
Shuji Shimizu ◽  
Atsunori Kamiya ◽  
Yusuke Sata ◽  
Kazunori Uemura ◽  
...  

Although baroreceptors are known to reset to operate in a higher pressure range in spontaneously hypertensive rats (SHR), the total profile of dynamic arterial pressure (AP) regulation remains to be clarified. We estimated open-loop transfer functions of the carotid sinus baroreflex in SHR and Wistar Kyoto (WKY) rats. Mean input pressures were set at 120 (WKY120 and SHR120) and 160 mmHg (SHR160). The neural arc transfer function from carotid sinus pressure to efferent splanchnic sympathetic nerve activity (SNA) revealed derivative characteristics in both WKY and SHR. The slope of dynamic gain (in decibels per decade) between 0.1 and 1 Hz was not different between WKY120 (10.1 ± 1.0) and SHR120 (10.4 ± 1.1) but was significantly greater in SHR160 (13.2 ± 0.8, P < 0.05 with Bonferroni correction) than in SHR120. The peripheral arc transfer function from SNA to AP showed low-pass characteristics. The slope of dynamic gain (in decibels per decade) did not differ between WKY120 (−34.0 ± 1.2) and SHR120 (−31.4 ± 1.0) or between SHR120 and SHR160 (−32.8 ± 1.3). The total baroreflex showed low-pass characteristics and the dynamic gain at 0.01 Hz did not differ between WKY120 (0.91 ± 0.08) and SHR120 (0.84 ± 0.13) or between SHR120 and SHR160 (0.83 ± 0.11). In both WKY and SHR, the declining slope of dynamic gain was significantly gentler for the total baroreflex than for the peripheral arc, suggesting improved dynamic AP response in the total baroreflex. In conclusion, the dynamic characteristics of AP regulation by the carotid sinus baroreflex were well preserved in SHR despite significantly higher mean AP.


2015 ◽  
Vol 308 (11) ◽  
pp. R957-R964 ◽  
Author(s):  
Toru Kawada ◽  
Yusuke Sata ◽  
Shuji Shimizu ◽  
Michael J. Turner ◽  
Masafumi Fukumitsu ◽  
...  

Although oxidative redox signaling affects arterial pressure (AP) regulation via modulation of vascular tone and sympathetic nerve activity (SNA), it remains unknown which effect plays a dominant role in the determination of AP in vivo. Open-loop systems analysis of the carotid sinus baroreflex was conducted to separately quantify characteristics of the neural arc from baroreceptor pressure input to SNA and the peripheral arc from SNA to AP in normotensive Wistar-Kyoto (WKY; n = 8) and spontaneously hypertensive rats (SHR; n = 8). Responses in SNA and AP to a staircase-wise increase in carotid sinus pressure were examined before and during intravenous administration of the membrane-permeable superoxide dismutase mimetic tempol (30 mg/kg bolus followed by 30 mg·kg−1·h−1). Two-way ANOVA indicated that tempol significantly decreased the response range of SNA (from 89.1 ± 2.4% to 60.7 ± 2.5% in WKY and from 77.5 ± 3.2% to 56.9 ± 7.3% in SHR, P < 0.001) without affecting the lower plateau of SNA (from 12.5 ± 2.4% to 9.5 ± 2.5% in WKY, and from 28.8 ± 2.8% to 30.4 ± 5.7% in SHR, P = 0.800) in the neural arc. While tempol did not affect the peripheral arc characteristics in WKY, it yielded a downward change in the regression line of AP vs. SNA in SHR. In conclusion, oxidative redox signaling plays an important role, not only in the pathological AP elevation, but also in the baroreflex-mediated physiological AP regulation. The effect of modulating oxidative redox signaling on the peripheral arc contributed to the determination of AP in SHR but not in WKY.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Gean Domingos ◽  
Fernanda Santos‐Almeida ◽  
Luiz Eduardo Silva ◽  
Daniel Dias ◽  
Carlos Alberto Silva ◽  
...  

2017 ◽  
Vol 312 (5) ◽  
pp. R787-R796 ◽  
Author(s):  
Toru Kawada ◽  
Michael J. Turner ◽  
Shuji Shimizu ◽  
Masafumi Fukumitsu ◽  
Atsunori Kamiya ◽  
...  

Recent clinical trials in patients with drug-resistant hypertension indicate that electrical activation of the carotid sinus baroreflex can reduce arterial pressure (AP) for more than a year. To examine whether the electrical stimulation from one baroreflex system impedes normal short-term AP regulation via another unstimulated baroreflex system, we electrically stimulated the left aortic depressor nerve (ADN) while estimating the dynamic characteristics of the carotid sinus baroreflex in anesthetized normotensive Wistar-Kyoto (WKY; n = 8) rats and spontaneously hypertensive rats (SHR; n = 7). Isolated carotid sinus regions were perturbed for 20 min using a Gaussian white noise signal with a mean of 120 mmHg for WKY and 160 mmHg for SHR. Tonic ADN stimulation (2 Hz, 10 V, and 0.1-ms pulse width) decreased mean sympathetic nerve activity (73.4 ± 14.0 vs. 51.6 ± 11.3 arbitrary units in WKY, P = 0.012; and 248.7 ± 33.9 vs. 181.1 ± 16.6 arbitrary units in SHR, P = 0.018) and mean AP (90.8 ± 6.6 vs. 81.2 ± 5.4 mmHg in WKY, P = 0.004; and 128.6 ± 9.8 vs. 114.7 ± 10.3 mmHg in SHR, P = 0.009). The slope of dynamic gain in the neural arc transfer function from carotid sinus pressure to sympathetic nerve activity was not different between trials with and without the ADN stimulation (12.55 ± 0.93 vs. 13.03 ± 1.28 dB/decade in WKY, P = 0.542; and 17.37 ± 1.01 vs. 17.47 ± 1.64 dB/decade in SHR, P = 0.946). These results indicate that the tonic ADN stimulation does not significantly modify the dynamic characteristics of the carotid sinus baroreflex.


Sign in / Sign up

Export Citation Format

Share Document