Site-specific regulation of osteogenesis: Maintenance of discrete levels of phenotypic expression in vitro

1989 ◽  
Vol 223 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Christopher A. G. McCulloch ◽  
Howard C. Tenenbaum ◽  
Catherine A. Fair ◽  
Catalena Birek
1997 ◽  
Vol 25 (5) ◽  
pp. 497-503
Author(s):  
Jean-Paul Morin ◽  
Marc E. De Broe ◽  
Walter Pfaller ◽  
Gabriele Schmuck

An ECVAM task force on nephrotoxicity has been established to advise, in particular, on the follow-up to recommendations made in the ECVAM workshop report on nephrotoxicity testing in vitro. Since this workshop was held, in 1994, there have been several improvements in the techniques used. For example, the duration of renal slice viability, and the maintenance of functional activities in slices, have been improved by using dynamic incubation systems with higher oxygen tensions and more-appropriate cell culture media. Highly differentiated primary cultures of pig, human and rabbit proximal tubule cells have been established by using specific cell isolation procedures and/or selective culture media. To date, the most comparable phenotypic expression and transepithelial transport capacities to proximal tubules in vivo have been obtained with primary cultures of rabbit proximal tubule cells which are grown on bicompartmental supports; in this system, transepithelial substrate gradients are generated and the transepithelial transport of both organic anions and cations is highly active. This in vitro system has been selected by ECVAM for further evaluation and prevalidation. Industrial needs in the area of nephrotoxicity testing have been identified, and recommendations are made at the end of this report concerning possible future initiatives.


2021 ◽  
pp. 019459982110147
Author(s):  
Ioan A. Lina ◽  
Alexandra Berges ◽  
Rafael Ospino ◽  
Ruth J. Davis ◽  
Kevin M. Motz ◽  
...  

Objective Iatrogenic laryngotracheal stenosis (iLTS) is the pathologic narrowing of the glottis, subglottis, and/or trachea secondary to intubation or tracheostomy related injury. Patients with type 2 diabetes mellitus (T2DM) are more likely to develop iLTS. To date, the metabolomics and phenotypic expression of cell markers in fibroblasts derived from patients with T2DM and iLTS are largely unknown. Study Design Controlled in vitro cohort study. Setting Tertiary referral center (2017-2020). Methods This in vitro study assessed samples from 6 patients with iLTS who underwent surgery at a single institution. Fibroblasts were isolated from biopsy specimens of laryngotracheal scar and normal-appearing trachea and compared with controls obtained from the trachea of rapid autopsy specimens. Patients with iLTS were subcategorized into those with and without T2DM. Metabolic substrates were identified by mass spectrometry, and cell protein expression was measured by flow cytometry. Results T2DM iLTS-scar fibroblasts had a metabolically distinct profile and clustered tightly on a Pearson correlation heat map as compared with non-T2DM iLTS-scar fibroblasts. Levels of itaconate were elevated in T2DM iLTS-scar fibroblasts. Flow cytometry demonstrated that T2DM iLTS-scar fibroblasts were associated with higher CD90 expression (Thy-1; mean, 95%) when compared with non-T2DM iLTS-scar (mean, 83.6%; P = .0109) or normal tracheal fibroblasts (mean, 81.1%; P = .0042). Conclusions Scar-derived fibroblasts from patients with T2DM and iLTS have a metabolically distinct profile. These fibroblasts are characterized by an increase in itaconate, a metabolite related to immune-induced scar remodeling, and can be identified by elevated expression of CD90 (Thy-1) in vitro.


1982 ◽  
Vol 62 (3) ◽  
pp. 751-757 ◽  
Author(s):  
J. A. BASARAB ◽  
R. T. BERG ◽  
J. R. THOMPSON

The in vitro glucose consumption and lactic acid production by erythrocytes from 20 cattle of a Beef Synthetic (SY) breed group and 25 cattle of a double-muscled (DM) breed group were determined. There were three age groups and two sexes within each breed group. Animals within the DM breed group were categorized as either phenotypically normal- to moderate-muscled (DM carriers) or extreme-muscled (extreme DM) based on the phenotypic expression of the double-muscling trait and on their breeding history. Both DM phenotypes had higher (P < 0.01) erythrocyte glucose consumption and lactic acid production than normal-muscled, noncarrier cattle of the SY breed group. Extreme DM cattle were not different (P > 0.05) in either their erythrocyte glucose consumption or lactic acid production compared with DM carriers. No difference (P > 0.05) due to breed or phenotype was observed in the molar ratio of lactic acid produced to glucose consumed by erythrocytes. These results suggest that carriers of the Double Muscled Syndrome, regardless of phenotypic expression of the double-muscling trait, have a higher rate of erythrocyte glycolysis than normal cattle. Key words: Cattle, double muscled, erythrocyte, glucose, lactic acid


2010 ◽  
Vol 432 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Joanne Durgan ◽  
Peter J. Parker

Fbw7 (F-box WD40 protein 7) is a major tumour suppressor, which mediates the degradation of several potent oncogenes. PKC (protein kinase C) comprises a serine/threonine kinase family that can promote transformation when dysregulated. In the present study, we investigated the relationship between Fbw7 and PKC. Multiple members of the PKC superfamily interact with the substrate-binding domain of Fbw7. However, we find no evidence for Fbw7-mediated degradation of PKC. Instead, we demonstrate that Fbw7 is a novel substrate for PKC. Two residues within the isoform-specific N-terminus of Fbw7α are phosphorylated in a PKC-dependent manner, both in vitro and in mammalian cells (Ser10 and Ser18). Mutational analyses reveal that phosphorylation of Fbw7α at Ser10 can regulate its nuclear localization. Cancer-associated mutations in nearby residues (K11R and the addition of a proline residue at position 16) influence Fbw7α localization in a comparable manner, suggesting that mislocalization of this protein may be of pathological significance. Together these results provide evidence for both physical and functional interactions between the PKC and Fbw7 families, and yield insights into the isoform-specific regulation of Fbw7α.


2007 ◽  
Vol 179 (5) ◽  
pp. 935-950 ◽  
Author(s):  
K.G. Suresh Kumar ◽  
Hervé Barriere ◽  
Christopher J. Carbone ◽  
Jianghuai Liu ◽  
Gayathri Swaminathan ◽  
...  

Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process.


Sign in / Sign up

Export Citation Format

Share Document