Expression OF membrane type 1 matrix metalloproteinase in human articular cartilage

1997 ◽  
Vol 40 (4) ◽  
pp. 704-709 ◽  
Author(s):  
Frank H. Büttner ◽  
Susan Chubinskaya ◽  
Daniel Margerie ◽  
Klaus Huch ◽  
Johannes Flechtenmacher ◽  
...  
1998 ◽  
Vol 333 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Frank H. BÜTTNER ◽  
Clare E. HUGHES ◽  
Daniel MARGERIE ◽  
Andrea LICHTE ◽  
Harald TSCHESCHE ◽  
...  

The recent detection of membrane type 1 matrix metalloproteinase (MT1-MMP) expression in human articular cartilage [Büttner, Chubinskaya, Margerie, Huch, Flechtenmacher, Cole, Kuettner, and Bartnik (1997) Arthritis Rheum. 40, 704–709] prompted our investigation of MT1-MMP's catabolic activity within the interglobular domain of aggrecan. For these studies we used rAgg1mut, a mutated form of the recombinant fusion protein (rAgg1) that has been used as a substrate to monitor ‘aggrecanase ’ catabolism in vitro [Hughes, Büttner, Eidenmüller, Caterson and Bartnik (1997) J. Biol. Chem. 272, 20269–20274]. The rAgg1 was mutated (G332 to A) to avoid the generation of a splice variant seen with the original genetic construct, which gave rise to heterogeneous glycoprotein products. This mutation yielded a homogeneous recombinant product. Studies in vitro with retinoic acid-stimulated rat chondrosarcoma cells indicated that the rAgg1mut substrate was cleaved at the ‘aggrecanase ’ site equivalent to Glu373-Ala374 (human aggrecan sequence enumeration) in its interglobular domain sequence segment. The differential catabolic activities of the recombinant catalytic domain (cd) of MT1-MMP and matrix metalloproteinases (MMPs) 3 and 8 were then compared by using this rAgg1mut as a substrate. Coomassie staining of rAgg1mut catabolites separated by SDS/PAGE showed similar patterns of degradation with all three recombinant enzymes. However, comparative immunodetection analysis, with neoepitope antibodies BC-3 (anti-ARGS …) and BC-14 (anti-FFGV …) to distinguish between ‘aggrecanase ’ and MMP-generated catabolites, indicated that the catalytic domain of MT1-MMP exhibited strong ‘aggrecanase ’ activity, cdMMP-8 weak activity and cdMMP-3 no activity. In contrast, cdMMP-3 and cdMMP-8 led to strongly BC-14-reactive catabolic fragments, whereas cdMT1-MMP resulted in weak BC-14 reactivity. N-terminal sequence analyses of the catabolites confirmed these results and also identified other potential minor cleavage sites within the interglobular domain of aggrecan. These results indicate that MT1-MMP is yet another candidate for ‘aggrecanase ’ activity in vivo.


2005 ◽  
Vol 280 (28) ◽  
pp. 26160-26168 ◽  
Author(s):  
Pamela Osenkowski ◽  
Samy O. Meroueh ◽  
Dumitru Pavel ◽  
Shahriar Mobashery ◽  
Rafael Fridman

2002 ◽  
Vol 298 (5) ◽  
pp. 646-650 ◽  
Author(s):  
Toshiya Nakamura ◽  
Takashi Ishikawa ◽  
Naoki Nanashima ◽  
Tomisato Miura ◽  
Hiroyuki Nozaka ◽  
...  

2019 ◽  
Vol 316 (1) ◽  
pp. C92-C103 ◽  
Author(s):  
Hojin Kang ◽  
Zhigang Hong ◽  
Ming Zhong ◽  
Jennifer Klomp ◽  
Kayla J. Bayless ◽  
...  

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


2004 ◽  
Vol 6 (3) ◽  
pp. 188-199 ◽  
Author(s):  
Timothy E. Van Meter ◽  
William C. Broaddus ◽  
Harcharan K. Rooprai ◽  
Geoffrey J. Pilkington ◽  
Helen L. Fillmore

Sign in / Sign up

Export Citation Format

Share Document