scholarly journals Expression and Function of Aminopeptidase N/CD13 Produced by Fibroblast-like Synoviocytes in Rheumatoid Arthritis: Role of CD13 in Chemotaxis of Cytokine-Activated T Cells Independent of Enzymatic Activity

2014 ◽  
Vol 67 (1) ◽  
pp. 74-85 ◽  
Author(s):  
Rachel Morgan ◽  
Judith Endres ◽  
Nilofar Behbahani-Nejad ◽  
Kristine Phillips ◽  
Jeffrey H. Ruth ◽  
...  
2004 ◽  
Vol 200 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Michael R. Ehrenstein ◽  
Jamie G. Evans ◽  
Animesh Singh ◽  
Samantha Moore ◽  
Gary Warnes ◽  
...  

Regulatory T cells have been clearly implicated in the control of disease in murine models of autoimmunity. The paucity of data regarding the role of these lymphocytes in human autoimmune disease has prompted us to examine their function in patients with rheumatoid arthritis (RA). Regulatory (CD4+CD25+) T cells isolated from patients with active RA displayed an anergic phenotype upon stimulation with anti-CD3 and anti-CD28 antibodies, and suppressed the proliferation of effector T cells in vitro. However, they were unable to suppress proinflammatory cytokine secretion from activated T cells and monocytes, or to convey a suppressive phenotype to effector CD4+CD25− T cells. Treatment with antitumor necrosis factor α (TNFα; Infliximab) restored the capacity of regulatory T cells to inhibit cytokine production and to convey a suppressive phenotype to “conventional” T cells. Furthermore, anti-TNFα treatment led to a significant rise in the number of peripheral blood regulatory T cells in RA patients responding to this treatment, which correlated with a reduction in C reactive protein. These data are the first to demonstrate that regulatory T cells are functionally compromised in RA, and indicate that modulation of regulatory T cells by anti-TNFα therapy may be a further mechanism by which this disease is ameliorated.


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3537-3548 ◽  
Author(s):  
J. H. Duncan Bassett ◽  
John G. Logan ◽  
Alan Boyde ◽  
Moira S. Cheung ◽  
Holly Evans ◽  
...  

Calcineurin-nuclear factor of activated T cells signaling controls the differentiation and function of osteoclasts and osteoblasts, and regulator of calcineurin-2 (Rcan2) is a physiological inhibitor of this pathway. Rcan2 expression is regulated by T3, which also has a central role in skeletal development and bone turnover. To investigate the role of Rcan2 in bone development and maintenance, we characterized Rcan2−/− mice and determined its skeletal expression in T3 receptor (TR) knockout and thyroid-manipulated mice. Rcan2−/− mice had normal linear growth but displayed delayed intramembranous ossification, impaired cortical bone formation, and reduced bone mineral accrual during development as well as increased mineralization of adult bone. These abnormalities resulted from an isolated defect in osteoblast function and are similar to skeletal phenotypes of mice lacking the type 2 deiodinase thyroid hormone activating enzyme or with dominant-negative mutations of TRα, the predominant TR isoform in bone. Rcan2 mRNA was expressed in primary osteoclasts and osteoblasts, and its expression in bone was differentially regulated in TRα and TRβ knockout and thyroid-manipulated mice. However, in primary osteoblast cultures, T3 treatment did not affect Rcan2 mRNA expression or nuclear factor of activated T cells c1 expression and phosphorylation. Overall, these studies establish that Rcan2 regulates osteoblast function and its expression in bone is regulated by thyroid status in vivo.


Arthritis ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Maryam Gol-Ara ◽  
Farhad Jadidi-Niaragh ◽  
Reza Sadria ◽  
Gholamreza Azizi ◽  
Abbas Mirshafiey

Rheumatoid arthritis (RA) is a common autoimmune disease and a systemic inflammatory disease which is characterized by chronic joint inflammation and variable degrees of bone and cartilage erosion and hyperplasia of synovial tissues. Considering the role of autoreactive T cells (particularly Th1 and Th17 cells) in pathophysiology of RA, it might be assumed that the regulatory T cells (Tregs) will be able to control the initiation and progression of disease. The frequency, function, and properties of various subsets of Tregs including natural Tregs (nTregs), IL-10-producing type 1 Tregs (Tr1 cells), TGF-β-producing Th3 cells, CD8+ Tregs, and NKT regulatory cells have been investigated in various studies associated with RA and collagen-induced arthritis (CIA) as experimental model of this disease. In this paper, we intend to submit the comprehensive information about the immunobiology of various subsets of Tregs and their roles and function in immunopathophysiology of RA and its animal model, CIA.


1991 ◽  
Vol 88 (2) ◽  
pp. 546-552 ◽  
Author(s):  
A Laffón ◽  
R García-Vicuña ◽  
A Humbría ◽  
A A Postigo ◽  
A L Corbí ◽  
...  

1997 ◽  
Vol 186 (7) ◽  
pp. 999-1014 ◽  
Author(s):  
Hideaki Ishikawa ◽  
Daniel Carrasco ◽  
Estefania Claudio ◽  
Rolf-Peter Ryseck ◽  
Rodrigo Bravo

The nfkb2 gene encodes the p100 precursor which produces the p52 protein after proteolytic cleavage of its COOH-terminal domain. Although the p52 product can act as an alternative subunit of NF-κB, the p100 precursor is believed to function as an inhibitor of Rel/NF-κB activity by cytoplasmic retention of Rel/NF-κB complexes, like other members of the IκB family. However, the physiological relevance of the p100 precursor as an IκB molecule has not been understood. To assess the role of the precursor in vivo, we generated, by gene targeting, mice lacking p100 but still containing a functional p52 protein. Mice with a homozygous deletion of the COOH-terminal ankyrin repeats of NF-κB2 (p100−/−) had marked gastric hyperplasia, resulting in early postnatal death. p100−/− animals also presented histopathological alterations of hematopoietic tissues, enlarged lymph nodes, increased lymphocyte proliferation in response to several stimuli, and enhanced cytokine production in activated T cells. Dramatic induction of nuclear κB–binding activity composed of p52-containing complexes was found in all tissues examined and also in stimulated lymphocytes. Thus, the p100 precursor is essential for the proper regulation of p52-containing Rel/NF-κB complexes in various cell types and its absence cannot be efficiently compensated for by other IκB proteins.


Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 795-803 ◽  
Author(s):  
Katia Urso ◽  
Arantzazu Alfranca ◽  
Sara Martínez-Martínez ◽  
Amelia Escolano ◽  
Inmaculada Ortega ◽  
...  

Abstract The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.


2016 ◽  
Vol 36 (24) ◽  
pp. 3113-3127 ◽  
Author(s):  
Martin G. Sauer ◽  
Jessica Herbst ◽  
Ulf Diekmann ◽  
Christopher E. Rudd ◽  
Christian Kardinal

The clinical potential of transplantation is often reduced by T cell-mediated alloresponses that cause graft rejection or graft-versus-host disease. Integrin-mediated adhesion between alloreactive T cells and antigen-presenting cells is essential for allorejection. The identity of the signaling events needed for the activation of integrins such as LFA-1 is poorly understood. Here, we identified a novel role of the protein tyrosine phosphatase SHP-1 in the regulation of murine LFA-1-mediated adhesion in an allograft setting. Upon alloactivation, SHP-1 activity is reduced, resulting in an increase in LFA-1 adhesion compared to that for syngeneically activated T cells. The importance of these differential activation properties was further indicated by small interfering RNA (siRNA) knockdown of SHP-1 in syngeneically and allogeneically stimulated T cells. Mechanistically, SHP-1 modulated the binding of SLP-76 to ADAP by dephosphorylation of the YDGI tyrosine motif of ADAP, a known docking site for the Src family kinase Fyn. This novel key role of SHP-1 in the regulation of LFA-1-mediated adhesion may provide a new insight into T cell-mediated alloresponses and may pave the way to the development of new immunosuppressive pharmaceutical agents.


Sign in / Sign up

Export Citation Format

Share Document