Coexisting attractors in a fractional order hydro turbine governing system and fuzzy PID based chaos control

Author(s):  
Karthikeyan Rajagopal ◽  
Hadi Jahanshahi ◽  
Sajad Jafari ◽  
Riessom Weldegiorgis ◽  
Anitha Karthikeyan ◽  
...  
2016 ◽  
Vol 65 ◽  
pp. 72-80 ◽  
Author(s):  
Bin Wang ◽  
Jianyi Xue ◽  
Fengjiao Wu ◽  
Delan Zhu

2019 ◽  
Vol 139 ◽  
pp. 447-458 ◽  
Author(s):  
Sunhua Huang ◽  
Bin Zhou ◽  
Siqi Bu ◽  
Canbing Li ◽  
Cong Zhang ◽  
...  

2021 ◽  
Author(s):  
Peng Chen ◽  
Bin Wang

Abstract This study focuses on the finite time control of a fractional order hydro-turbine governing system (HGS) with load rejection. First, the hydraulic servo system has significant historical reliance. Since it is a powerful advantage for fractional calculus to describe the function which has significant historical reliance, the fractional order hydraulic servo system is adopted and the more actual fractional order hydro-turbine governing system is presented. Second, some definitions and properties are given, and the state trajectories of HGS with load rejection is observed. The simulation results show that the state trajectory of the system is not stable, so it is necessary to design a controller with better control effect. Third, based on the frequency distribution model, the equivalent transformation model of HGS is presented. A new finite time sliding mode control scheme is proposed for the stability control of the HGS with load rejection. Furthermore, the no chattering sliding mode controller and its detailed mathematical derivation are given. The system stability is proved, and the upper limit of HGS finite time stability is given. Finally, numerical simulations have verified the theoretical results. The controller can make the state trajectories of the HGS converge to zero in a finite time, and the control time is very short.


2019 ◽  
Vol 48 (3) ◽  
pp. 401-414 ◽  
Author(s):  
Mona Faraji-Niri ◽  
Vahid Asadzadeh ◽  
Javad Rahmani Fard

This paper is a theoretical and practical study on the stabilization of fractional order Lipschitz nonlinear systems under arbitrary switching. The investigated system is a generalization of both switched and fractional order dynamical systems. Firstly, a switched frequency distributed model is introduced as an equivalent for the system. Subsequently, a sufficient condition is obtained for the stabilizability of the system based on the Lyapunov approach. Finally, the results are extended to synthesis mode-dependent state feedback controller for the system. All the results are expressed in terms of coupled linear matrix inequalities, which are solvable by optimization tools and directly reducible to the conditions of the integer order nonlinear switching systems as well as the conventional non-switched nonlinear fractional order systems. The proposed method has various practical implications. As an example, it is utilized to control Francis hydro-turbine governing system. This system is represented as a switching structure and supposed to supply a load suffering abrupt changes driven by an arbitrary switching mechanism. The simulation results support the usefulness of the method.


Author(s):  
Deepak Kumar Lal ◽  
Ajit Kumar Barisal

Background: Due to the increasing demand for the electrical power and limitations of conventional energy to produce electricity. Methods: Now the Microgrid (MG) system based on alternative energy sources are used to provide electrical energy to fulfill the increasing demand. The power system frequency deviates from its nominal value when the generation differs the load demand. The paper presents, Load Frequency Control (LFC) of a hybrid power structure consisting of a reheat turbine thermal unit, hydropower generation unit and Distributed Generation (DG) resources. Results: The execution of the proposed fractional order Fuzzy proportional-integral-derivative (FO Fuzzy PID) controller is explored by comparing the results with different types of controllers such as PID, fractional order PID (FOPID) and Fuzzy PID controllers. The controller parameters are optimized with a novel application of Grasshopper Optimization Algorithm (GOA). The robustness of the proposed FO Fuzzy PID controller towards different loading, Step Load Perturbations (SLP) and random step change of wind power is tested. Further, the study is extended to an AC microgrid integrated three region thermal power systems. Conclusion: The performed time domain simulations results demonstrate the effectiveness of the proposed FO Fuzzy PID controller and show that it has better performance than that of PID, FOPID and Fuzzy PID controllers. The suggested approach is reached out to the more practical multi-region power system. Thus, the worthiness and adequacy of the proposed technique are verified effectively.


2021 ◽  
Vol 143 ◽  
pp. 110575
Author(s):  
Nadjette Debbouche ◽  
A. Othman Almatroud ◽  
Adel Ouannas ◽  
Iqbal M. Batiha

Sign in / Sign up

Export Citation Format

Share Document