Graphite Oxidation Phenomena During Massive Air Ingress Accidents in Nuclear High Temperature Gas Cooled Reactors with Pebble Bed Core

1983 ◽  
Vol 87 (11) ◽  
pp. 1086-1090 ◽  
Author(s):  
Rainer Moormann
2001 ◽  
Author(s):  
Chang H. Oh ◽  
Richard L. Moore ◽  
Brad J. Merrill ◽  
David A. Petti

Abstract A loss-of-coolant accident is one of the design-basis accidents for a high-temperature gas-cooled reactor (HTGR). Following the depressurization of helium in the core, if the accident is not mitigated, there exists the potential for air to enter the core through the break and oxidize the in-core graphite structure in the modular pebble bed reactor (MPBR). This paper presents the results of the graphite oxidation model developed as part of the Idaho National Engineering and Environmental Laboratory’s Directed Research and Development effort. Although gas reactors have been developed in the past with limited success, the innovations of modularity and integrated state-of-art control systems coupled with improved fuel design and a pebble bed core make this design potentially very attractive from an economic and technical perspective. A schematic diagram of a reference design of the MPBR has been established at a major component level (INEEL & MIT, 1999). Steady-state and transient thermal hydraulics models will be produced with key parameters established for these conditions for all major components. Development of an integrated plant model to allow for transient analysis on a more sophisticated level is now being developed. In this paper, preliminary results of the hypothetical air ingress are presented. A graphite oxidation model was developed to determine temperature and the control mechanism in the spherical graphite geometry.


Author(s):  
Chang H. Oh ◽  
Eung S. Kim

An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (6) preventing fluid density gradient; (7) preventing fluid temperature gradient; (7) preventing high temperature. Based on the basic concepts listed above, various air-ingress mitigation methods are proposed in this study. Among them, the following one mitigation idea was extensively investigated using computational fluid dynamic codes (CFD) in terms of helium injection in the lower plenum. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model was developed based on the GT-MHR 600MWt as a reference design. The simulation results showed that the helium replaces the air flow into the core and significantly reduces the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully.


2017 ◽  
Vol 106 ◽  
pp. 143-153 ◽  
Author(s):  
Zhipeng Chen ◽  
Xiaoming Chen ◽  
Yanhua Zheng ◽  
Jun Sun ◽  
Fubing Chen ◽  
...  

2016 ◽  
Vol 98 ◽  
pp. 120-131 ◽  
Author(s):  
Peng Liu ◽  
Zhipeng Chen ◽  
Yanhua Zheng ◽  
Jun Sun ◽  
Fubing Chen ◽  
...  

Author(s):  
Joseph P. Yurko ◽  
Katrina M. Sorensen ◽  
Andrew Kadak ◽  
Xing L. Yan

This paper describes the experimental validation of a proposed method that uses a small amount of helium injection to prevent the onset of natural circulation in high temperature gas reactors (HTGR) following a depressurized loss of coolant accident. If this technique can be shown to work, air ingress accidents can be mitigated. A study by Dr. Xing L. Yan et al. (2008) developed an analytical estimate for the minimum injection rate (MIR) of helium required to prevent natural circulation. Yan’s study used a benchmarked CFD model of a prismatic core reactor to show that this method of helium injection would impede natural circulation. The current study involved the design and construction of an experimental apparatus in conjunction with a CFD model to validate Yan’s method. Based on the computational model, a physical experimental model was built and tested to simulate the main coolant pipe rupture of a Pebble Bed Reactor (PBR), a specific type of HTGR. The experimental apparatus consisted of a five foot tall, 2 inch diameter, copper U-tube placed atop a 55-gallon barrel to reduce sensor noise from outside air movement. Hot and cold legs were simulated to reflect the typical natural circulation conditions expected in reactor systems. FLUENT was used to predict the diffusion and circulation phases. Several experimental trials were run with and without helium injection. Results showed that with minimal helium injection, the onset of natural circulation was prevented which suggests that such a method may be useful in the design of high temperature gas reactors to mitigate air ingress accidents.


Carbon ◽  
2018 ◽  
Vol 127 ◽  
pp. 158-169 ◽  
Author(s):  
Cristian I. Contescu ◽  
Robert W. Mee ◽  
Yoonjo (Jo Jo) Lee ◽  
José D. Arregui-Mena ◽  
Nidia C. Gallego ◽  
...  

1987 ◽  
Vol 97 (1) ◽  
pp. 72-88 ◽  
Author(s):  
F. Schürrer ◽  
W. Ninaus ◽  
K. Oswald ◽  
R. Rabitsch ◽  
Hj. Müller ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 159-176 ◽  
Author(s):  
Shengyao Jiang ◽  
Jiyuan Tu ◽  
Xingtuan Yang ◽  
Nan Gui

Sign in / Sign up

Export Citation Format

Share Document