Modelling of Turbulent Methane-Air Diffusion Flames: The Laminar-Flamelet Model

1986 ◽  
Vol 90 (11) ◽  
pp. 1005-1010 ◽  
Author(s):  
B. Rogg ◽  
F. Behrendt ◽  
J. Warnatz
2014 ◽  
Vol 161 (5) ◽  
pp. 1294-1309 ◽  
Author(s):  
Yuan Xuan ◽  
Guillaume Blanquart ◽  
Michael E. Mueller

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Wenyan Song

The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM.


1988 ◽  
Vol 110 (1) ◽  
pp. 173-181 ◽  
Author(s):  
J. P. Gore ◽  
G. M. Faeth

An experimental and theoretical study of the structure and radiation properties of luminous, round, turbulent acetylene/air diffusion flames is described. Measurements were made of mean and fluctuating velocities, mean concentrations, laser extinction (514 and 632.8 nm), spectral radiation intensities (1200–5500 nm), and radiative heat fluxes. The measurements were used to evaluate structure predictions based on the laminar flamelet concept, and radiation predictions based on a narrow-band model both ignoring and considering turbulence/radiation interactions. State relationships needed for the laminar flamelet concept were found from auxiliary measurements in laminar flames. Predictions were encouraging; however, quantitative accuracy was inferior to earlier findings for luminous flames. This is attributed to the large radiative heat loss fractions of acetylene/air flames (approaching 60 percent of the heat release rate); coupled structure and radiation analysis should be considered for improved results. The findings suggest significant turbulence/radiation interactions (increasing spectral intensities 40–100 percent from estimates based on mean properties); and that soot volume fractions may approximate universal fractions of mixture fraction in turbulent acetylene/air diffusion flames.


Author(s):  
Foluso Ladeinde ◽  
Xiaodan Cai ◽  
Balu Sekar

We adopt a steady-state flamelet model in this paper to study the performance of reduced and detailed kinetic mechanisms for methane/air diffusion flames. Through the numerical calculations, we investigate the sensitivity of the main and intermediate species mass fractions to the mixture fraction dissipation rate, χ. Our results seem to suggest a weak to moderate effect of χ on the calculated species mass fraction. It has also been shown in this paper that the current flamelet calculations fail to predict the extinction strain rate.


Sign in / Sign up

Export Citation Format

Share Document