scholarly journals Effects of the scalar dissipation rate on the steady laminar flamelet model

2010 ◽  
Vol T142 ◽  
pp. 014048
Author(s):  
Jian Zhang ◽  
Guodong Jin ◽  
Guowei He
Author(s):  
Prakash Ghose ◽  
Amitava Datta ◽  
Achintya Mukhopadhyay

Numerical simulation employing different models is popularly used to predict spray combustion of liquid fuels. In the present work, we have compared the effects of three different combustion models, viz., eddy dissipation model, laminar flamelet model with detailed chemical reaction mechanism, and constrained equilibrium flamelet model, on the temperature, soot, and NOx distributions in an axisymmetric combustor burning kerosene spray. Experiments have also been performed in a combustor of the same geometry to validate some predictions from the models. The constraint condition for the equilibrium flamelet model has been adopted by suitably accounting the effects of scalar dissipation rate on the prediction of scalar variables in a laminar flamelet and by considering the mixture fraction and scalar dissipation rate distributions in the combustor under test. It is found that the results predicted by the two flamelet models agree closely between them and also with the experiments. On the other hand, the eddy dissipation model predicts a much higher flame temperature, soot, and NOx concentrations in the combustor. The results suggest the importance of chemistry in the prediction of the turbulent spray flame. It also suggests that with a proper choice of the constraint condition, the equilibrium flamelet model can address the nonequilibrium chemistry in the flame due to the high value of scalar dissipation rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Wenyan Song

The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM.


2015 ◽  
Vol 229 (4) ◽  
Author(s):  
Hernan Olguin ◽  
Eva Gutheil

AbstractThe formulation of a comprehensive flamelet model to consider detailed chemical reaction mechanisms in the simulation of turbulent spray flames is a very challenging task due to the inherent multi-regime structure of spray flames. Non-premixed, premixed, and evaporation-controlled combustion regimes may be found in a single spray flame. Recently, attempts have been made to extend classical single regime flamelet models to more complex situations, where at least two combustion regimes coexist. The objective of this work is to develop a framework in which two-regime flamelet models can be described and combined in order to advance the development of a comprehensive flamelet model for turbulent spray flames. For this purpose, a set of spray flamelet equations in terms of the mixture fraction and a reaction progress variable is derived, which includes the evaporation, characterizing the spray flames, and which describes all combustion regimes appearing in spray flames. The two-regime and single regime flamelet equations available in the literature are retrieved from these multi-dimensional spray flamelet equations as special cases. The derived set of spray flamelet equations is then used to evaluate structures of laminar ethanol/air spray flames in the counterflow configuration in order to determine the significance of different combustion regimes. The present study concerns spray flames with no pre-vaporized liquid in the oxidizing gas phase, and it is found that only non-premixed and evaporation-controlled combustion regimes exist, so that premixed effects may be neglected. Moreover, an exact transport equation for the scalar dissipation rate is derived, which explicitly takes spray evaporation and detailed transport into account. This equation is then used to evaluate assumptions commonly adopted in the literature. The results show that the spatial variation of the mean molecular weight of the mixture may be neglected in the formulation of the mixture fraction, but it may be significant for its scalar dissipation rate. The assumption of unity Lewis number may lead to non-physical values of the scalar dissipation rate of the mixture fraction, whereas the use of a mass-averaged diffusion coefficient of the mixture is a good approximation for the spray flames under investigation.


2009 ◽  
Vol 627 ◽  
pp. 1-32 ◽  
Author(s):  
HIROYUKI ABE ◽  
ROBERT ANTHONY ANTONIA ◽  
HIROSHI KAWAMURA

Direct numerical simulations of a turbulent channel flow with passive scalar transport are used to examine the relationship between small-scale velocity and scalar fields. The Reynolds number based on the friction velocity and the channel half-width is equal to 180, 395 and 640, and the molecular Prandtl number is 0.71. The focus is on the interrelationship between the components of the vorticity vector and those of the scalar derivative vector. Near the wall, there is close similarity between different components of the two vectors due to the almost perfect correspondence between the momentum and thermal streaks. With increasing distance from the wall, the magnitudes of the correlations become smaller but remain non-negligible everywhere in the channel owing to the presence of internal shear and scalar layers in the inner region and the backs of the large-scale motions in the outer region. The topology of the scalar dissipation rate, which is important for small-scale scalar mixing, is shown to be associated with the organized structures. The most preferential orientation of the scalar dissipation rate is the direction of the mean strain rate near the wall and that of the fluctuating compressive strain rate in the outer region. The latter region has many characteristics in common with several turbulent flows; viz. the dominant structures are sheetlike in form and better correlated with the energy dissipation rate than the enstrophy.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26 ◽  
Author(s):  
Shokri Amzin ◽  
Mariusz Domagała

In turbulent premixed flames, for the mixing at a molecular level of reactants and products on the flame surface, it is crucial to sustain the combustion. This mixing phenomenon is featured by the scalar dissipation rate, which may be broadly defined as the rate of micro-mixing at small scales. This term, which appears in many turbulent combustion methods, includes the Conditional Moment Closure (CMC) and the Probability Density Function (PDF), requires an accurate model. In this study, a mathematical closure for the conditional mean scalar dissipation rate, <Nc|ζ>, in Reynolds, Averaged Navier–Stokes (RANS) context is proposed and tested against two different Direct Numerical Simulation (DNS) databases having different thermochemical and turbulence conditions. These databases consist of lean turbulent premixed V-flames of the CH4-air mixture and stoichiometric turbulent premixed flames of H2-air. The mathematical model has successfully predicted the peak and the typical profile of <Nc|ζ> with the sample space ζ and its prediction was consistent with an earlier study.


Sign in / Sign up

Export Citation Format

Share Document