scholarly journals In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa

2008 ◽  
Vol 29 (4) ◽  
pp. 268-276 ◽  
Author(s):  
Nadia Falzone ◽  
Carin Huyser ◽  
Francois Fourie ◽  
Tim Toivo ◽  
Dariusz Leszczynski ◽  
...  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3250-3250
Author(s):  
Mo Yang ◽  
Weiqing Su ◽  
Liuming Yang ◽  
Huimin Kong ◽  
Huiling Wei ◽  
...  

Abstract Background: Angelica Polysaccharide (APS) is from the root of Radix Angelicae Sinensis (Danggui). Danggui has been used for centuries to treat blood-deficiency related diseases. The hematopoietic effect of Danggui may be related to its constituent, polysaccharide. The effects of angelica polysaccharide on cryopreservation of platelets and megakaryocytes have not been well studied. This study focused on anti-apoptotic effect of APS and TPO on cryopreservation of platelets and megakaryocytes and provided new methods for prolonging the preservation time of platelets in vitro. Methods: The expression of platelet membrane glycoprotein CD41 and CD61, as well as the platelet apoptotic rate, Caspase 3 expression and mitochondrial membrane potential (MMP) were detected by flow cytometry; the anti-apoptotic mechanism of APS by PI3K /AKT signaling pathway was analyzed by Western blot assay. CFU assays were used to determine the effects of APS on megakaryocytic progenitor cells. Analyses of Annexin V, Caspase-3, and Mitochondrial Membrane Potential were conducted in megakaryocytic cell line M-07e. The effects of APS on cells treated with Ly294002, PI3K inhibitor and the effect of APS on the p-AKT were also studied. Results: The platelets were divided into 4 group: control group (4 ℃ stored platelets), APS group (APS-treated platelets stored at 4 ℃), LY294002 group (LY294002-treated platelets stored at 4 ℃) and LY294002+APS group (LY294002+APS treated platelets stored at 4 ℃). The apoptotic rate of platelets in LY294002 group was obviously increased. Compared with control group, the expression of CD41 and CD61 gradually decreased along with the enhancement of LY294002 concentrations (r=-0.953). The apoptotic rate of platelets in LY294002 group was enhanced significantly (P<0.05). While in LY294002+APS group, the apoptotic rate of platelets was significantly reduced (P<0.05) as compare with LY294002 group, which suggest that APS has an anti-apoptotic effect on the cryopreserved platelets. APS decreased the expression of Caspase-3 and inhibited the reduction of mitochondrial membrane potential induced by LY294002. Moreover, APS increased the activation of PI3K /AKT pathway in Platelets . We further analyzed the in vitro effect of APS on CFU-MK formation. APS (50 ug/ml) enhanced TPO (50 ng/ml) -induced CFU-MK formation (p=0.06, n=4). APS also significantly enhanced PDGF, bFGF and VEGF-induced CFU-MK formation (n=4). Moreover, the anti-apoptotic effect of APS in M-07e cells was also demonstrated by Annexin-V, Caspase-3, and JC-1 assays. Adding LY294002 alone increased the percentage of cells undergoing apoptosis. However, additional of APS to LY294002-treated cells reversed the percentage of cells undergoing apoptosis. Furthermore, addition of APS significantly increased the p-AKT. Conclusion: APS, like TPO, has an anti-apoptotic effect on the cryopreserved platelets and megakaryocytes through activating PI3K/AKT, decreasing the expression of Caspase-3 and inhibiting the reduction of MMP. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (2) ◽  
pp. 320
Author(s):  
Wilmer Alcazar ◽  
Sami Alakurtti ◽  
Maritza Padrón-Nieves ◽  
Maija Liisa Tuononen ◽  
Noris Rodríguez ◽  
...  

Herein, we evaluated in vitro the anti-leishmanial activity of betulin derivatives in Venezuelan isolates of Leishmania amazonensis, isolated from patients with therapeutic failure. Methods: We analyzed promastigote in vitro susceptibility as well as the cytotoxicity and selectivity of the evaluated compounds. Additionally, the activity of selected compounds was determined in intracellular amastigotes. Finally, to gain hints on their potential mechanism of action, the effect of the most promising compounds on plasma and mitochondrial membrane potential, and nitric oxide and superoxide production by infected macrophages was determined. Results: From the tested 28 compounds, those numbered 18 and 22 were chosen for additional studies. Both 18 and 22 were active (GI50 ≤ 2 µM, cytotoxic CC50 > 45 µM, SI > 20) for the reference strain LTB0016 and for patient isolates. The results suggest that 18 significantly depolarized the plasma membrane potential (p < 0.05) and the mitochondrial membrane potential (p < 0.05) when compared to untreated cells. Although neither 18 nor 22 induced nitric oxide production in infected macrophages, 18 induced superoxide production in infected macrophages. Conclusion: Our results suggest that due to their efficacy and selectivity against intracellular parasites and the potential mechanisms underlying their leishmanicidal effect, the compounds 18 and 22 could be used as tools for designing new chemotherapies against leishmaniasis.


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yinghong Zhou ◽  
Xiaofeng Dong ◽  
Peng Xiu ◽  
Xin Wang ◽  
Jianrong Yang ◽  
...  

Hepatocellular carcinoma (HCC) is regarded as a leading cause of cancer-related deaths, and its progression is associated with hypoxia and the induction of hypoxia-inducible factor (HIF). Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, induces cell death in various malignancies. However, the underlying mechanism remains to be elucidated in HCC, especially under hypoxic conditions. The alteration of COX-2 and HIF-1α oncogenicity was evaluated in HCC specimens by tissue microarray. Cell viability, angiogenesis assays, and xenografted nude mice were used to evaluate the effects of meloxicam, along with flow cytometry to detect the cell cycle, apoptosis, and mitochondrial membrane potential (ΔΨm) of HCC. qRT-PCR, Western blotting, immunofluorescence, immunohistochemistry, luciferase assay, and RNAi were carried out to determine the HIF-1α signaling affected by meloxicam. In this study, we showed that meloxicam exerts antiproliferative and antiangiogenesis efficacy in vitro and in vivo and causes disruption of mitochondrial membrane potential (ΔΨm), thus leading to caspase-dependent apoptosis under hypoxic environments. Exposure to meloxicam significantly reduced HIF-1α transcriptional activation and expression through sequestering it in the cytoplasm and accelerating degradation via increasing the von Hippel-Lindau tumor suppressor protein (pVHL) in HCC. These data demonstrated that inhibition of HIF-1α by meloxicam could suppress angiogenesis and enhance apoptosis of HCC cells. This discovery highlights that COX-2 specific inhibitors may be a promising therapy in the treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document