Biosensor‐Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae

2017 ◽  
Vol 12 (10) ◽  
pp. 1600687 ◽  
Author(s):  
John M. Leavitt ◽  
James M. Wagner ◽  
Cuong C. Tu ◽  
Alice Tong ◽  
Yanyi Liu ◽  
...  
2020 ◽  
Vol 9 (3) ◽  
pp. 634-646 ◽  
Author(s):  
Guokun Wang ◽  
Süleyman Øzmerih ◽  
Rogério Guerreiro ◽  
Ana C. Meireles ◽  
Ana Carolas ◽  
...  

2013 ◽  
Vol 15 ◽  
pp. 55-66 ◽  
Author(s):  
Kathleen A. Curran ◽  
John M. Leavitt ◽  
Ashty S. Karim ◽  
Hal S. Alper

2012 ◽  
Vol 114 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Shunichi Nakayama ◽  
Ken Tabata ◽  
Takahiro Oba ◽  
Kenichi Kusumoto ◽  
Shinji Mitsuiki ◽  
...  

2017 ◽  
Author(s):  
Chenlu Zhang ◽  
Ligia Acosta-Sampson ◽  
Vivian Yaci Yu ◽  
Jamie H. D. Cate

AbstractThe economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.


ChemCatChem ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 3075-3084 ◽  
Author(s):  
Sofia Capelli ◽  
Davide Motta ◽  
Claudio Evangelisti ◽  
Nikolaos Dimitratos ◽  
Laura Prati ◽  
...  

1991 ◽  
Vol 30 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Z. M. B. Figueiredo ◽  
L. B. Carvalho

2006 ◽  
Vol 72 (8) ◽  
pp. 5492-5499 ◽  
Author(s):  
Minoska Valli ◽  
Michael Sauer ◽  
Paola Branduardi ◽  
Nicole Borth ◽  
Danilo Porro ◽  
...  

ABSTRACT Yeast strains expressing heterologous l-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants.


Sign in / Sign up

Export Citation Format

Share Document