L-malic acid production using immobilized saccharomyces cerevisiae

1991 ◽  
Vol 30 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Z. M. B. Figueiredo ◽  
L. B. Carvalho

2012 ◽  
Vol 114 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Shunichi Nakayama ◽  
Ken Tabata ◽  
Takahiro Oba ◽  
Kenichi Kusumoto ◽  
Shinji Mitsuiki ◽  
...  


2021 ◽  
pp. 2000431
Author(s):  
Nam Kyu Kang ◽  
Jae Won Lee ◽  
Donald R. Ort ◽  
Yong‐Su Jin


2009 ◽  
Vol 76 (3) ◽  
pp. 744-750 ◽  
Author(s):  
Rintze M. Zelle ◽  
Erik de Hulster ◽  
Wendy Kloezen ◽  
Jack T. Pronk ◽  
Antonius J. A. van Maris

ABSTRACT A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments.



1984 ◽  
Vol 19 (6) ◽  
pp. 427-429 ◽  
Author(s):  
Fabrizio Fatichenti ◽  
Giovanni Antonio Farris ◽  
Pietrino Deiana ◽  
Salvatore Ceccarelli


1996 ◽  
Vol 18 (12) ◽  
pp. 1441-1446 ◽  
Author(s):  
Xiaohai Wang ◽  
C. S. Gong ◽  
George T. Tsao


2015 ◽  
Vol 70 (5-6) ◽  
pp. 165-167 ◽  
Author(s):  
Thomas P. West

Abstract Malic acid production from the biodiesel coproduct crude glycerol by Aspergillus niger ATCC 9142, ATCC 10577 and ATCC 12846 was observed to occur with the highest malic acid level acid being produced by A. niger ATCC 12846. Fungal biomass production from crude glycerol was similar, but ATCC 10577 produced the highest biomass. Fungal biotransformation of crude glycerol into the commercially valuable organic acid malic acid appeared feasible.



2013 ◽  
Vol 79 (19) ◽  
pp. 6050-6058 ◽  
Author(s):  
Christoph Knuf ◽  
Intawat Nookaew ◽  
Stephen H. Brown ◽  
Michael McCulloch ◽  
Alan Berry ◽  
...  

ABSTRACTMalic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producerAspergillus flavushave so far been disqualified because of special growth requirements or the production of mycotoxins. AsA. oryzaeis a very close relative or even an ecotype ofA. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter−1, using peptone than the one of 22.27 ± 0.46 g liter−1obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of theSaccharomyces cerevisiaeyeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes.



2006 ◽  
Vol 72 (8) ◽  
pp. 5492-5499 ◽  
Author(s):  
Minoska Valli ◽  
Michael Sauer ◽  
Paola Branduardi ◽  
Nicole Borth ◽  
Danilo Porro ◽  
...  

ABSTRACT Yeast strains expressing heterologous l-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants.



Sign in / Sign up

Export Citation Format

Share Document