In Situ Bone Tissue Engineering With an Endogenous Stem Cell Mobilizer and Osteoinductive Nanofibrous Polymeric Scaffolds

2017 ◽  
Vol 12 (12) ◽  
pp. 1700062 ◽  
Author(s):  
Jong Seung Lee ◽  
Yoonhee Jin ◽  
Hyun-Ji Park ◽  
Kisuk Yang ◽  
Min Suk Lee ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


2005 ◽  
Vol 898 ◽  
Author(s):  
Devendra Verma ◽  
Rahul Bhowmik ◽  
Bedabibhas Mohanty ◽  
Dinesh R Katti ◽  
Kalpana S Katti

AbstractInterfaces play an important role in controlling the mechanical properties of composites. Optimum mechanical strength of scaffolds is of prime importance for bone tissue engineering. In the present work, molecular dynamics simulations and experimental studies have been conducted to study effect of interfacial interactions on mechanical properties of composites for bone replacement. In order to mimic biological processes, hydroxyapatite (HAP) is mineralized in presence of polyacrylic acid (PAAc) (in situ HAP). Further, solid and porous composites of in situ HAP with polycaprolactone (PCL) are made. Mechanical tests of composites of in situ HAP with PAAc have shown improved strain recovery, higher modulus/density ratio and also improved mechanical response in simulated body fluid (SBF). Simulation studies indicate potential for calcium bridging between –COO− of PAAc and surface calcium of HAP. This fact is also supported by infrared spectroscopic studies. PAAc modified surfaces of in situ HAP offer means to control the microstructure and mechanical response of porous composites. Nanoindentation experiments indicate that apatite grown on in situ HAP/PCL composites from SBF has improved elastic modulus and hardness. This work gives insight into the interfacial mechanisms responsible for mechanical response as well as bioactivity in biomaterials.


2022 ◽  
Author(s):  
Ting Song ◽  
Jianhua Zhou ◽  
Ming Shi ◽  
Liuyang Xuan ◽  
Huamin Jiang ◽  
...  

Scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of bone component, such as osteon with concentric multilayers assembled by nanofibers, hindered the performance...


2021 ◽  
Vol 17 (1) ◽  
pp. 015003
Author(s):  
Lya Piaia ◽  
Simone S Silva ◽  
Joana M Gomes ◽  
Albina R Franco ◽  
Emanuel M Fernandes ◽  
...  

Abstract Bone regeneration and natural repair are long-standing processes that can lead to uneven new tissue growth. By introducing scaffolds that can be autografts and/or allografts, tissue engineering provides new approaches to manage the major burdens involved in this process. Polymeric scaffolds allow the incorporation of bioactive agents that improve their biological and mechanical performance, making them suitable materials for bone regeneration solutions. The present work aimed to create chitosan/beta-tricalcium phosphate-based scaffolds coated with silk fibroin and evaluate their potential for bone tissue engineering. Results showed that the obtained scaffolds have porosities up to 86%, interconnectivity up to 96%, pore sizes in the range of 60–170 μm, and a stiffness ranging from 1 to 2 MPa. Furthermore, when cultured with MC3T3 cells, the scaffolds were able to form apatite crystals after 21 d; and they were able to support cell growth and proliferation up to 14 d of culture. Besides, cellular proliferation was higher on the scaffolds coated with silk. These outcomes further demonstrate that the developed structures are suitable candidates to enhance bone tissue engineering.


2011 ◽  
Vol 5 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Isabel B. Leonor ◽  
Márcia T. Rodrigues ◽  
Manuela E. Gomes ◽  
Rui L. Reis

2007 ◽  
Vol 42 (12) ◽  
pp. 4183-4190 ◽  
Author(s):  
Yusuf M. Khan ◽  
Emily K. Cushnie ◽  
John K. Kelleher ◽  
Cato T. Laurencin

10.5772/33102 ◽  
2012 ◽  
Author(s):  
Lauren Vernon ◽  
Lee Kaplan ◽  
Chun-Yuh Charles

Author(s):  
Pierre P.D. Kondiah ◽  
Yahya E. Choonara ◽  
Pariksha J. Kondiah ◽  
Thashree Marimuthu ◽  
Lisa C. du Toit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document