Osteon-mimetic 3D nanofibrous scaffold enhancing stem cell proliferation and osteogenic differentiation for bone regeneration

2022 ◽  
Author(s):  
Ting Song ◽  
Jianhua Zhou ◽  
Ming Shi ◽  
Liuyang Xuan ◽  
Huamin Jiang ◽  
...  

Scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of bone component, such as osteon with concentric multilayers assembled by nanofibers, hindered the performance...

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jiaqi Zhu ◽  
Zhiping Qi ◽  
Changjun Zheng ◽  
Pan Xue ◽  
Chuan Fu ◽  
...  

Bone tissue engineering scaffold provides an effective treatment for bone defect repair. Biodegradable bone scaffold made of various synthetic and natural materials can be used as bone substitutes and grafts for defect site, which has great potential to support bone regeneration. Regulation of cell-scaffold material interactions is an important factor for modulating the cellular activity in bone tissue engineering scaffold applications. Thus, the hydrophilic, mechanical, and chemical properties of scaffold materials directly affect the results of bone regeneration and functional recovery. In this study, a poly-L-lysine (PLL) surface-modified poly(lactic-co-glycolic acid) (PLGA)/graphene oxide (GO) (PLL-PLGA/GO) hybrid fiber matrix was fabricated for bone tissue regeneration. Characterization of the resultant hybrid fiber matrices was done using scanning electron microscopy (SEM), contact angle, and a material testing machine. According to the results obtained from the test above, the PLL-PLGA/GO hybrid fiber matrices exhibited high wettability and mechanical strength. The special surface characteristics of PLL-PLGA/GO hybrid fiber matrices were more beneficial for protein adsorption and inhibit the proliferation of pathogens. Moreover, the enhanced regulation of MC3T3-E1 cell proliferation and differentiation was observed, when the resultant hybrid fiber matrices were combined with electrical stimulation (ES). The cellular response of MC3T3-E1 cells including cell adhesion, proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and osteogenesis-related gene expression was significantly enhanced with the synergistic effect of resultant hybrid fiber matrices and ES. These data indicate that the PLL-PLGA/GO hybrid fiber matrices supported the cellular response in terms of cell proliferation and osteogenesis differentiation in the presence of electrical stimulation, which could be a potential treatment for bone defect.


2020 ◽  
Vol 8 (2) ◽  
pp. 657-672 ◽  
Author(s):  
Feng Wang ◽  
Kai Hou ◽  
Wenjing Chen ◽  
Yuancheng Wang ◽  
Riyuan Wang ◽  
...  

The present study demonstrates fabrication of PDGF-BB functionalized sericin hydrogel to explore biomaterials-related utility in bone tissue engineering.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4959 ◽  
Author(s):  
Maria Eischen-Loges ◽  
Karla M.C. Oliveira ◽  
Mit B. Bhavsar ◽  
John H. Barker ◽  
Liudmila Leppik

Background Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES’s demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Methods Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. Results We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1, Osteopontin, Osterix and Calmodulin. We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. Discussion This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.


Author(s):  
Chanjuan Dong ◽  
Fangyu Qiao ◽  
Guobao Chen ◽  
Yonggang Lv

The extracellular matrix (ECM)-based materials has been employed as scaffolds for bone tissue engineering, providing a suitable microenvironment that possesses biophysical and biochemical cues for cell attachment, proliferation and differentiation....


2021 ◽  
Vol 16 (1) ◽  
pp. 36-47
Author(s):  
Tianxu Zhang ◽  
Yang Gao ◽  
Weitong Cui ◽  
Yanjing Li ◽  
Dexuan Xiao ◽  
...  

With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xin Huang ◽  
Donghua Huang ◽  
Ting Zhu ◽  
Xiaohua Yu ◽  
Kaicheng Xu ◽  
...  

AbstractMetal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M$$\varphi $$ φ s). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.


2019 ◽  
Vol 7 (4) ◽  
pp. 1565-1573 ◽  
Author(s):  
Xiao-Yuan Peng ◽  
Min Hu ◽  
Fang Liao ◽  
Fan Yang ◽  
Qin-Fei Ke ◽  
...  

La-MCS/CTS scaffolds promoted the proliferation and osteogenic differentiation of rBMSCs in vitro and bone regeneration in vivo.


Sign in / Sign up

Export Citation Format

Share Document