Spatial translational motions of base pairs in DNA molecules: Application of the extended matrix generator method

Biopolymers ◽  
1994 ◽  
Vol 34 (1) ◽  
pp. 121-142 ◽  
Author(s):  
Nancy L. Marky ◽  
Wilma K. Olson
1984 ◽  
Vol 4 (3) ◽  
pp. 387-398
Author(s):  
C T Wake ◽  
T Gudewicz ◽  
T Porter ◽  
A White ◽  
J H Wilson

Relatively little is known about the damage suffered by transfected DNA molecules during their journey from outside the cell into the nucleus. To follow selectively the minor subpopulation that completes this journey, we devised a genetic approach using simian virus 40 DNA transfected with DEAE-dextran. We investigated this active subpopulation in three ways: (i) by assaying reciprocal pairs of mutant linear dimers which differed only in the arrangement of two mutant genomes; (ii) by assaying a series of wild-type oligomers which ranged from 1.1 to 2.0 simian virus 40 genomes in length; and (iii) by assaying linear monomers of simian virus 40 which were cleaved within a nonessential region to leave either sticky, blunt, or mismatched ends. We conclude from these studies that transfected DNA molecules in the active subpopulation are moderately damaged by fragmentation and modification of ends. As a whole, the active subpopulation suffers about one break per 5 to 15 kilobases, and about 15 to 20% of the molecules have one or both ends modified. Our analysis of fragmentation is consistent with the random introduction of double-strand breaks, whose cause and exact nature are unknown. Our analysis of end modification indicated that the most prevalent form of damage involved deletion or addition of less than 25 base pairs. In addition we demonstrated directly that the efficiencies of joining sticky, blunt, or mismatched ends are identical, verifying the apparent ability of cells to join nearly any two DNA ends and suggesting that the efficiency of joining approaches 100%. The design of these experiments ensured that the detected damage preceded viral replication and thus should be common to all DNAs transfected with DEAE-dextran and not specific for viral DNA. These measurements of damage within transfected DNA have important consequences for studies of homologous and nonhomologous recombination in somatic cells as is discussed.


2021 ◽  
Author(s):  
Stefanie V. Lensing ◽  
Peter Ellis ◽  
Federico Abascal ◽  
Iñigo Martincorena ◽  
Robert J. Osborne

Abstract Somatic mutations drive cancer development and may contribute to ageing and other diseases. Yet, the difficulty of detecting mutations present only in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. To overcome these limitations, we introduce nanorate sequencing (NanoSeq), a new duplex sequencing protocol with error rates <5 errors per billion base pairs in single DNA molecules from cell populations. The version of the protocol described here uses clean genome fragmentation with a restriction enzyme to prevent end-repair-associated errors and ddBTPs/dATPs during A-tailing to prevent nick extension. Both changes reduce the error rate of standard duplex sequencing protocols by preventing the fixation of DNA damage into both strands of DNA molecules during library preparation. We also use qPCR quantification of the library prior to amplification to optimise the complexity of the sequencing library given the desired sequencing coverage, maximising duplex coverage. The sample preparation protocol takes between 1 and 2 days, depending on the number of samples processed. The bioinformatic protocol is described in:https://github.com/cancerit/NanoSeqhttps://github.com/fa8sanger/NanoSeq_Paper_Code


1984 ◽  
Vol 4 (12) ◽  
pp. 2661-2667
Author(s):  
D Dawson ◽  
G Herrick

Approximately 20,000 different short, linear, macronuclear DNA molecules are derived from micronuclear sequences of Oxytricha fallax after conjugation. These macronuclear DNAs are terminated at both ends by 20 base pairs of the sequence 5'-dC4A4-3'. Sequences homologous to this repeat (C4A4+) are also abundant in the micronuclear chromosomes, but most reside at their telomeres. Here we show that nontelomeric C4A4 clusters of 20 base pairs or longer exist in only a few hundred copies per micronuclear genome. This demonstrates that nearly none of the 20,000 sequence blocks of micronuclear DNA destined to be macronuclear DNA molecules can be flanked by full-length (20-base pair) C4A4 clusters, and therefore C4A4 repeats must be added to most, if not all, macronuclear telomeres during macronuclear development. Six internal micronuclear C4A4+ loci were cloned, and their structural relationships with macronuclear and micronuclear sequences were examined. The possible origins and functions of these rare, micronuclear internal C4A4 loci are discussed.


2012 ◽  
Vol 18 (5) ◽  
pp. 1049-1053 ◽  
Author(s):  
David C. Bell ◽  
W. Kelley Thomas ◽  
Katelyn M. Murtagh ◽  
Cheryl A. Dionne ◽  
Adam C. Graham ◽  
...  

AbstractAdvances in DNA sequencing, based on fluorescent microscopy, have transformed many areas of biological research. However, only relatively short molecules can be sequenced by these technologies. Dramatic improvements in genomic research will require accurate sequencing of long (>10,000 base-pairs), intact DNA molecules. Our approach directly visualizes the sequence of DNA molecules using electron microscopy. This report represents the first identification of DNA base pairs within intact DNA molecules by electron microscopy. By enzymatically incorporating modified bases, which contain atoms of increased atomic number, direct visualization and identification of individually labeled bases within a synthetic 3,272 base-pair DNA molecule and a 7,249 base-pair viral genome have been accomplished. This proof of principle is made possible by the use of a dUTP nucleotide, substituted with a single mercury atom attached to the nitrogenous base. One of these contrast-enhanced, heavy-atom-labeled bases is paired with each adenosine base in the template molecule and then built into a double-stranded DNA molecule by a template-directed DNA polymerase enzyme. This modification is small enough to allow very long molecules with labels at each A-U position. Image contrast is further enhanced by using annular dark-field scanning transmission electron microscopy (ADF-STEM). Further refinements to identify additional base types and more precisely determine the location of identified bases would allow full sequencing of long, intact DNA molecules, significantly improving the pace of complex genomic discoveries.


2002 ◽  
Vol 81 (6) ◽  
pp. 1134-1136 ◽  
Author(s):  
J. S. Hwang ◽  
K. J. Kong ◽  
D. Ahn ◽  
G. S. Lee ◽  
D. J. Ahn ◽  
...  

2020 ◽  
Vol 59 (13) ◽  
pp. 9325-9338
Author(s):  
Alicia Dominguez-Martin ◽  
Simona Galli ◽  
José A. Dobado ◽  
Noelia Santamaría-Díaz ◽  
Antonio Pérez-Romero ◽  
...  

2015 ◽  
Vol 51 (32) ◽  
pp. 7043-7046 ◽  
Author(s):  
Wataru Shirato ◽  
Junya Chiba ◽  
Masahiko Inouye

New artificial DNA molecules exclusively consisting of four types of alkynyl C-nucleotides with four types of nonnatural bases are described.


1982 ◽  
Vol 2 (11) ◽  
pp. 907-912 ◽  
Author(s):  
G. F. Hong

The dideoxy sequencing technique has been applied to the direct sequencing of large double-stranded DNA molecules with a small single-stranded primer. For instance, the method was applied to the lambda genome, which contains 48 502 base-pairs (Sanger F, Coulson AR, Hong GF, Hill D & Petersen GB, 1982, J. Mol. Biol., in press), and the coding region for gene W identified. The procedure proves useful in the sequence analysis of a large number of different mutations in a particular region and in the analysis of eukaryotic DNA cloned in plasmids, phages, and cosmids.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Enrique Maciá

A fully analytical treatment of the base-pair and codon dynamics in double-stranded DNA molecules is introduced, by means of a realistic treatment that considers different mass values for G, A, T, and C nucleotides and takes into account the intrinsic three-dimensional, helicoidal geometry of DNA in terms of a Hamitonian in cylindrical coordinates. Within the framework of the Peyrard–Dauxois–Bishop model, we consider the coupling between stretching and stacking radial oscillations as well as the twisting motion of each base pair around the helix axis. By comparing the linearized dynamical equations for the angular and radial variables corresponding to the bp local scale with those of the longer triplet codon scale, we report an underlying hierarchical symmetry. The existence of synchronized collective oscillations of the base-pairs and their related codon triplet units are disclosed from the study of their coupled dynamical equations. The possible biological role of these correlated, long-range oscillation effects in double standed DNA molecules containing mirror-symmetric codons of the form XXX, XX’X, X’XX’, YXY, and XYX is discussed in terms of the dynamical equations solutions and their related dispersion relations.


Nanoscale ◽  
2021 ◽  
Author(s):  
Minjung Kim ◽  
Sehui Bae ◽  
Inrok Oh ◽  
Jejoong Yoo ◽  
Jun Soo Kim

Looping of double-stranded DNA molecules with 100∼200 base pairs into minicircles, catenanes, and rotaxanes has been suggested as a potential tool for DNA nanotechnologies. However, sharp DNA bending into a...


Sign in / Sign up

Export Citation Format

Share Document