Thermophilic Anaerobic Digestion of Solid Waste for Fuel Gas Production

1975 ◽  
Vol 17 (8) ◽  
pp. 1119-1135 ◽  
Author(s):  
Charles L. Cooney ◽  
Donald L. Wise
2000 ◽  
Vol 41 (3) ◽  
pp. 51-59 ◽  
Author(s):  
P. Battistoni ◽  
P. Pavan ◽  
J. Mata-Alvarez ◽  
M. Prisciandaro ◽  
F. Cecchi

In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes.In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 43 ◽  
Author(s):  
Mohammad Heidari ◽  
Shakirudeen Salaudeen ◽  
Omid Norouzi ◽  
Bishnu Acharya ◽  
Animesh Dutta

Two of the methods for converting biomass to fuel are hydrothermal carbonization (HTC) and anaerobic digestion (AD). This study is aimed at designing and analyzing two scenarios for bioenergy production from undervalued biomass (sawdust). In one of the scenarios (direct combustion or DC), raw biomass is burned in a combustor to provide the heat that is required by the Rankine cycle to generate electricity. In the other scenario (HTC-AD), the raw biomass first undergoes HTC treatment. While the solid product (hydrochar) is used to produce power by a Rankine cycle, the liquid by-product undergoes an AD process. This results in fuel gas production and it can be used in a Brayton cycle to generate more power. Energy and mass balance analysis of both scenarios were developed for each unit process by using Engineering Equation Solver (EES). The required data were obtained experimentally or from the literature. The performances of the proposed systems were evaluated, and a sensitivity analysis was presented to help in finding the best operational conditions.


1996 ◽  
Vol 16 (1-4) ◽  
pp. 265-279 ◽  
Author(s):  
Don Augenstein ◽  
Donald L. Wise ◽  
Nghiem Xuan Dat ◽  
Nguyen Duc Khien

2013 ◽  
Vol 67 (11) ◽  
pp. 2527-2533 ◽  
Author(s):  
Naoki Abe ◽  
Yue-Qin Tang ◽  
Makoto Iwamura ◽  
Shigeru Morimura ◽  
Kenji Kida

The influence of two pretreatment methods, thermal treatment and low-pressure wet oxidation, on the sludge digestion efficiency was examined. Batch thermophilic anaerobic digestion was used to evaluate the effectiveness of the pretreatment methods in terms of volatile suspended solids (VSS) digestion efficiency and gas production. The results showed that the gas production was not proportional to the VSS degradation efficiency of either thermal treatment or low-pressure wet oxidation. Low-pressure wet oxidation treatment at 150 °C along with 40% of the theoretical oxygen required to oxidize organic carbon gave the highest gas production and the VSS digestion efficiency of 77% at a VSS loading rate of 8 g l−1 d−1. The digestion efficiency was about 30% higher than that of thermophilic anaerobic digestion without sludge pretreatment. Sewage sludge could be treated effectively at a high VSS digestion efficiency with this pretreatment followed by thermophilic anaerobic digestion.


2016 ◽  
Vol 95 (8) ◽  
pp. 645-647 ◽  
Author(s):  
Subaru NAKAJIMA ◽  
Naoto SHIMIZU ◽  
Hiroyuki ISHIWATA ◽  
Tadahiko ITO

Sign in / Sign up

Export Citation Format

Share Document