Construction of a Structural Enzyme Adsorption/Kinetics Model to Elucidate Additives Associated Lignin‐Cellulase Interactions in Complex Bioconversion System

Author(s):  
Ka‐Lai Chan ◽  
Chun‐Han Ko ◽  
Ken‐Lin Chang ◽  
Shao‐Yuan Leu
2012 ◽  
Vol 12 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Susy Yunita Prabawati ◽  
Jumina Jumina ◽  
Sri Juari Santosa ◽  
Mustofa Mustofa ◽  
Keisuke Ohto

A research has been conducted to investigate the capability of a series of novel calix[6]arenes-based polymers: poly-monoallyloxycalix[6]arene (2a), poly-monoallyloxypenta-estercalix[6]arene (2b) and poly-monoallyloxypenta-acidcalix[6]arene (2c) for trapping of heavy metal cations such as Cd(II), Cu(II) and Cr(III). The existence of active hydroxy group (-OH) and with a tunnel-like structure of the polymers, caused the polymers can be used as adsorbents for heavy metals. The adsorption process was carried out in batch method in the variation of acidity (pH), contact time and initial concentration of metal ions. The results showed that the amount of adsorbed metal increased with the increasing of the pH of metal solution. For these three polymers, the amount of metal ions Cd(II), Cu(II) and Cr(III) adsorbed was optimum at pH 7, 6 and 5 respectively. The optimum contact time for Cd(II) and Cu(II) was 120 min, while that for Cr(III) was 60 min. Study of the adsorption kinetics showed that the adsorption of Cd(II), Cu(II) and Cr(III) using polymer 2a followed kinetics model of Ho. For adsorbent 2b and 2c, the adsorption kinetics of Cd(II) and Cr(III) also followed kinetics model of Ho while for the Cu(II) followed Lagergren kinetic models. Isothermal studies showed that the adsorption of metal ions on all adsorbents tend to follow the Langmuir isotherm. The adsorption energies of the three adsorbents were higher than 23 kJ/mole and polymer 2c has the largest adsorption capacity for Cr(III).


2010 ◽  
Vol 27 (5) ◽  
pp. 1469-1475 ◽  
Author(s):  
G. Vijaya Kumar ◽  
P. Ramalingam ◽  
Min Jung Kim ◽  
Chang Kyoo Yoo ◽  
M. Dharmendira Kumar

Author(s):  
N’da Samuel ◽  
Yao Marcel Konan ◽  
Trokourey Albert

The aim of this study is to characterize phosphates adsorption kinetics on the superficial sediments of Vridi channel from its new hydromorphology. So, three scenarios have been carried out taking account the different waters seasons of this estuary by using pH and temperature as relevant parameters. In the first scenario, the experiments carried out at pH = 8 and T = 20°C to simulate phosphates adsorption on these sediments in its great cold season. In the second, the experiments carried out at pH = 8 and T = 25° C to simulate phosphates adsorption on these substrates in its hot season and small cold season. In the third, the experiments carried out at pH = 7 and T = 30°C to simulate phosphates adsorption on these sediments in its flood season. The experiences were carried out according to US EPA/530/SW-87/006-F protocol. KH2PO4 solutions were used as phosphates synthetic solutions. The experimental data were modeling by Lagergeen kinetics model (pseudo-order 1), Blanchard kinetics model (pseudo-order 2), Elovich kinetics model, Weber and Morris kinetics model and, external diffusion kinetics model. The results have showed phosphates adsorption on these sediments increase in the experiments carried out at pH = 8 and T = 20°C to those carried out at pH = 7 and T = 30°C. All experimental data have been well modeling by Blanchard kinetics model. So, these phosphates adsorption kinetics are pseudo-order 2 and the chemisorption is the dominant mechanism. The results obtained by the experimental data modeling by Weber and Morris kinetics model and external diffusion kinetics model showed that this process is not limiting by the molecular diffusion process. The experimental data have been again well modeling by Elovich kinetics model. That has confirmed the chemisorption character of this adsorption, and showed this chemisorption is activated.


2018 ◽  
Vol 13 (1) ◽  
pp. 155892501801300
Author(s):  
Xuchen Tao ◽  
Quan Feng ◽  
Hui He

In order to utilize the adsorption selectivity of calixarenes towards heavy metal ions, calixarene functionalized polyimide (Calix-PI) fibers were prepared by three main synthesis procedures including preparation of the calixarene polyamide acid (Calix-PAA) spinning solution via amidation, fabrication of the Calix-PAA fibers by electrospinning, and preparation of the Calix-PI fibers via thermal imidization on the Calix-PAA fibers. The Calix-PI fibers were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy and thermogravimetric analysis. The Calix-PI fibers display selective adsorption on Pb(II), which is fit with the pseudo-second-order adsorption kinetics model and the Freundlich adsorption isothermal model. The rate constant of the pseudo-second-order adsorption kinetics model and the maximum Pb(II) uptake have all been calculated. The practical adsorption of Pb(II) on the Calix-PI fibers is mainly attributed to the monolayer chemical adsorption and slightly depended on the physical adsorption.


Sign in / Sign up

Export Citation Format

Share Document