scholarly journals The attentional‐relevance and temporal dynamics of visual‐tactile crossmodal interactions differentially influence early stages of somatosensory processing

2014 ◽  
Vol 4 (2) ◽  
pp. 247-260 ◽  
Author(s):  
Christina Popovich ◽  
W. Richard Staines
2008 ◽  
Vol 28 (3) ◽  
pp. 776-786 ◽  
Author(s):  
S. J. Bensmaia ◽  
P. V. Denchev ◽  
J. F. Dammann ◽  
J. C. Craig ◽  
S. S. Hsiao

Author(s):  
Pallavi V. Limaye ◽  
Michele L. McGovern ◽  
Mandakini B. Singh ◽  
Katerina D. Oikonomou ◽  
Glenn S. Belinsky ◽  
...  

2021 ◽  
Author(s):  
Ron Sender ◽  
Yinon M. Bar-On ◽  
Sang Woo Park ◽  
Elad Noor ◽  
Jonathan Dushoffd ◽  
...  

Quantifying the temporal dynamics of infectiousness of individuals infected with SARS-CoV-2 is crucial for understanding the spread of the COVID-19 pandemic and for analyzing the effectiveness of different mitigation strategies. Many studies have tried to use data from the onset of symptoms of infector-infectee pairs to estimate the infectiousness profile of SARS-CoV-2. However, both statistical and epidemiological biases in the data could lead to an underestimation of the duration of infectiousness. We correct for these biases by curating data from the initial outbreak of the pandemic in China (when mitigation steps were still minimal), and find that the infectiousness profile is wider than previously thought. For example, our estimate for the proportion of transmissions occurring 14 days or more after infection is an order of magnitude higher - namely 19% (95% CI 10%-25%). The inferred generation interval distribution is sensitive to the definition of the period of unmitigated transmission, but estimates that rely on later periods are less reliable due to intervention effects. Nonetheless, the results are robust to other factors such as the model, the assumed growth rate and possible bias of the dataset. Knowing the unmitigated infectiousness profile of infected individuals affects estimates of the effectiveness of self-isolation and quarantine of contacts. The framework presented here can help design better quarantine policies in early stages of future epidemics using data from the initial stages of transmission.


2012 ◽  
Vol 25 (0) ◽  
pp. 26-27 ◽  
Author(s):  
Verena Conrad ◽  
Marco Pino Vitello ◽  
Uta Noppeney

Introduction: In multistable perception, the brain alternates between several perceptual explanations of ambiguous sensory signals. Recent studies have demonstrated crossmodal interactions between ambiguous and unambiguous signals. However it is currently unknown whether multiple bistable processes can interact across the senses (Conrad et al., 2010; Pressnitzer and Hupe, 2006). Using the apparent motion quartet in vision and touch, this study investigated whether bistable perceptual processes for vision and touch are independent or influence each other when powerful cues of congruency are provided to facilitate visuotactile integration (Conrad et al., in press). Methods: When two visual flashes and/or tactile vibration pulses are presented alternately along the two diagonals of the rectangle, subjects’ percept vacillates between vertical and horizontal apparent motion in the visual and/or tactile modalities (Carter et al., 2008). Observers were presented with unisensory (visual/tactile), visuotactile spatially congruent and incongruent apparent motion quartets and reported their visual or tactile percepts. Results: Congruent stimulation induced pronounced visuotactile interactions as indicated by increased dominance times and %-bias for the percept already dominant under unisensory stimulation. Yet, the temporal dynamics did not converge for congruent stimulation. It depended also on subjects’ attentional focus and was generally slower for tactile than visual reports. Conclusion: Our results support Bayesian approaches to perceptual inference, where the probability of a perceptual interpretation is determined by combining a modality-specific prior with incoming visual and/or tactile evidence. Under congruent stimulation, joint evidence from both senses decelerates the rivalry dynamics by stabilizing the more likely perceptual interpretation. Importantly, the perceptual stabilization was specific to spatiotemporally congruent visuotactile stimulation indicating multisensory rather than cognitive bias mechanisms.


Author(s):  
George G. Cocks ◽  
Louis Leibovitz ◽  
DoSuk D. Lee

Our understanding of the structure and the formation of inorganic minerals in the bivalve shells has been considerably advanced by the use of electron microscope. However, very little is known about the ultrastructure of valves in the larval stage of the oysters. The present study examines the developmental changes which occur between the time of conception to the early stages of Dissoconch in the Crassostrea virginica(Gmelin), focusing on the initial deposition of inorganic crystals by the oysters.The spawning was induced by elevating the temperature of the seawater where the adult oysters were conditioned. The eggs and sperm were collected separately, then immediately mixed for the fertilizations to occur. Fertilized animals were kept in the incubator where various stages of development were stopped and observed. The detailed analysis of the early stages of growth showed that CaCO3 crystals(aragonite), with orthorhombic crystal structure, are deposited as early as gastrula stage(Figuresla-b). The next stage in development, the prodissoconch, revealed that the crystal orientation is in the form of spherulites.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Sign in / Sign up

Export Citation Format

Share Document