Inhibition of endogenous miR‐23a/miR‐377 in CHO cells enhances difficult‐to‐express recombinant lysosomal sulfatase activity

2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Ifeanyi Michael Amadi ◽  
Vishal Agrawal ◽  
Terri Christianson ◽  
Cameron Bardliving ◽  
Parviz Shamlou ◽  
...  
Keyword(s):  
2018 ◽  
Vol 2 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Qiong Wang ◽  
Michael J. Betenbaugh

As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 354-362 ◽  
Author(s):  
K. Matsuda ◽  
E. Araki ◽  
R. Yoshimura ◽  
K. Tsuruzoe ◽  
N. Furukawa ◽  
...  

2016 ◽  
Vol 32 (4) ◽  
pp. 60-67
Author(s):  
A. N. MOROZOV ◽  
Z. V. ZAKHAROV ◽  
R. A. KOCHELABOV ◽  
D. V. TYUPA ◽  
A. V. ISERKAPOV ◽  
...  

Author(s):  
Shazid Md. Sharker ◽  
Md. Atiqur Rahman

Most of clinical approved protein-based drugs or under in clinical trial have a profound impact in the treatment of critical diseases. The mammalian eukaryotic cells culture approaches, particularly the CHO (Chinese Hamster Ovary) cells are mainly used in the biopharmaceutical industry for the mass-production of therapeutic protein. Recent advances in CHO cell bioprocessing to yield recombinant proteins and monoclonal antibodies have enabled the expression of quality protein. The developments of cell lines are possible to upgrade specific productivity. As a result, it holds an interesting area for academic as well as industrial researchers around the world. This review will concentrate on the recent progress of the mammalian CHO cells culture technology and the future scope of further development for the mass-production of protein therapeutics.


2019 ◽  
Vol 6 (3) ◽  
pp. 207-217
Author(s):  
Joshua Rico ◽  
Andre Nantel ◽  
Phuong Lan Pham ◽  
Robert Voyer ◽  
Yves Durocher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document