Extraordinary Thermal Stability of an Oligodeoxynucleotide Octamer Constructed from Alternating 7-Deaza-7-iodo guanine and 5-Iodocytosine Base Pairs - DNA Duplex Stabilization by Halogen Bonds?

2014 ◽  
Vol 11 (4) ◽  
pp. 532-541 ◽  
Author(s):  
Natalya Ramzaeva ◽  
Henning Eickmeier ◽  
Helmut Rosemeyer
2014 ◽  
Vol 10 ◽  
pp. 2139-2144 ◽  
Author(s):  
Susanne Hensel ◽  
Nicole Megger ◽  
Kristina Schweizer ◽  
Jens Müller

The imidazole–Ag(I)–imidazole base pair is one of the best-investigated artificial metal-mediated base pairs. We show here that its stability can be further improved by formally replacing the imidazole moiety by a 2-methylimidazole or 4-methylimidazole moiety. A comparison of the thermal stability of several double helices shows that the addition of one equivalent of Ag(I) leads to a 50% larger increase in the melting temperature when a DNA duplex with methylated imidazole nucleosides is applied. This significant effect can likely be attributed to a better steric shielding of the metal ion within the metal-mediated base pair.


Biochemistry ◽  
1995 ◽  
Vol 34 (40) ◽  
pp. 12921-12925 ◽  
Author(s):  
Anil Kumar

2007 ◽  
Vol 111 (22) ◽  
pp. 6127-6133 ◽  
Author(s):  
Kenichi Yamashita ◽  
Masaya Miyazaki ◽  
Yoshiko Yamaguchi ◽  
Hiroyuki Nakamura ◽  
Hideaki Maeda

2020 ◽  
Vol 22 (1) ◽  
pp. 61
Author(s):  
Amen Shamim ◽  
Maria Razzaq ◽  
Kyeong Kyu Kim

I-Motif is a tetrameric cytosine-rich DNA structure with hemi-protonated cytosine: cytosine base pairs. Recent evidence showed that i-motif structures in human cells play regulatory roles in the genome. Therefore, characterization of novel i-motifs and investigation of their functional implication are urgently needed for comprehensive understanding of their roles in gene regulation. However, considering the complications of experimental investigation of i-motifs and the large number of putative i-motifs in the genome, development of an in silico tool for the characterization of i-motifs in the high throughput scale is necessary. We developed a novel computation method, MD-TSPC4, to predict the thermal stability of i-motifs based on molecular modeling and molecular dynamic simulation. By assuming that the flexibility of loops in i-motifs correlated with thermal stability within certain temperature ranges, we evaluated the correlation between the root mean square deviations (RMSDs) of model structures and the thermal stability as the experimentally obtained melting temperature (Tm). Based on this correlation, we propose an equation for Tm prediction from RMSD. We expect this method can be useful for estimating the overall structure and stability of putative i-motifs in the genome, which can be a starting point of further structural and functional studies of i-motifs.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


Sign in / Sign up

Export Citation Format

Share Document