Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1

2016 ◽  
Vol 40 (7) ◽  
pp. 742-749 ◽  
Author(s):  
Xiao-yu Zhang ◽  
Luo-xian Zhang ◽  
Ya-li Guo ◽  
Li-min Zhao ◽  
Xue-yi Tang ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 386-391
Author(s):  
He Zhu ◽  
Yali Guo ◽  
Xiaoli Wang ◽  
Min Zhu ◽  
Jiahui Lei ◽  
...  

To observe the effect of transient receptor potential ankyrin 1 (TRPA1) channel on the proliferation and inflammation of airway smooth muscle cells (SMC) in asthmatic rats, the rats were randomly allocated into three treatment groups: control, asthma, and Shenmai injection (SMI), with 15 rats in each group. Asthmatic rat models were induced by ovalbumin (OVA) inhalation. Rats in the control and asthma groups were intraperitoneally injected 2 mL NS daily, whereas rats in the SMI treatment group were intraperitoneally injected with 2 mL SMI daily. RT-qPCR and western blotting were used to test for TRPA1 and proliferating cell nuclear antigen (PCNA) mRNA and protein expression. ELISA was used to test the expression of interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13) in the serum. Compared with the control group, there were significantly higher levels of TRPA1 and PCNA mRNA and protein, as well as of IL-4, IL-5, and IL-13 in asthmatic rats (P< 0.05). After SMI treatment, there was significantly lower expression of TRPA1, PCNA, IL-4, IL-5, and IL-13 compared to the levels in asthmatic rats (P < 0.05). TRPA1, IL-4, IL-5, and IL-13 were highly expressed in the tracheal SMC of asthmatic rats. Inhibiting TRPA1, IL-4, IL-5, and IL-13 using SMI may be one of the mechanisms that can intervene chronic airway inflammation and asthma proliferation.


2002 ◽  
Vol 364 (3) ◽  
pp. 641-648 ◽  
Author(s):  
Hwei Ling ONG ◽  
Jinglong CHEN ◽  
Tim CHATAWAY ◽  
Helen BRERETON ◽  
Lei ZHANG ◽  
...  

Although there are numerous reports of the presence of mRNA encoding the transient receptor potential (TRP)-1 protein in animal cells and of the detection of the heterologously expressed TRP-1 protein by Western-blot analysis, it has proved difficult to unequivocally detect endogenous TRP-1 proteins. A combination of immunoprecipitation and Western-blot techniques, employing a polyclonal antibody and a monoclonal antibody respectively, was developed. Using this technique, a band of approx. 80kDa was detected in extracts of H4-IIE rat liver hepatoma cell line and guinea-pig airway smooth muscle (ASM) cells transfected with human TRPC-1 cDNA. In extracts of untransfected H4-IIE cells, ASM cells, rat brain and guinea-pig brain, a band of approx. 92kDa was detected. Reverse transcriptase PCR experiments detected cDNA encoding both the α- and β-isoforms of TRP-1 in H4-IIE cells. Treatment of protein extracts with peptide N-glycosidase F indicated that the 92kDa band represents an N-glycosylated protein. Western blots conducted with a commercial polyclonal anti-(TRP-1) antibody (Alm) detected a band of 120kDa in extracts of H4-IIE cells and guinea-pig ASM cells. A combination of immunoprecipitation and Western-blotting techniques with the Alm antibody did not detect any bands at 92kDa or 120kDa in extracts of H4-IIE and ASM cells. It is concluded that (a) the 92-kDa band detected in untransfected H4-IIE and ASM cells corresponds to the N-glycosylated β-isoform of endogenous TRP-1, (b) the combined immunoprecipitation and Western-blot approach, employing two different antibodies, provides a reliable and specific procedure for detecting endogenous TRP-1 proteins, and (c) that caution is required in developing and utilizing anti-(TRP-1) antibodies.


Sign in / Sign up

Export Citation Format

Share Document