orai channels
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 29)

H-INDEX

13
(FIVE YEARS 4)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3062
Author(s):  
Yang Li ◽  
Xue Yang ◽  
Yuequan Shen

Orai channels belong to the calcium release-activated calcium (CRAC) channel family. Orai channels are responsible for the influx of extracellular Ca2+ that is triggered by Ca2+ depletion from the endoplasmic reticulum (ER); this function is essential for many types of non-excitable cells. Extensive structural and functional studies have advanced the knowledge of the molecular mechanism by which Orai channels are activated. However, the gating mechanism that allows Ca2+ permeation through Orai channels is less well explained. Here, we reviewed and summarized the existing structural studies of Orai channels. We detailed the structural features of Orai channels, described structural comparisons of their closed and open states, and finally proposed a “push–pull” model of Ca2+ permeation.


2021 ◽  
Vol 22 (15) ◽  
pp. 8020
Author(s):  
Adéla Tiffner ◽  
Isabella Derler

Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the “classical” Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Guilherme H. Souza Bomfim ◽  
Erna Mitaishvili ◽  
Talita Ferreira Aguiar ◽  
Rodrigo S. Lacruz

AbstractMibefradil is a tetralol derivative originally developed as an antagonist of T-type voltage-gated calcium (Ca2+) channels to treat hypertension when used at nanomolar dosage. More recently, its therapeutic application in hypertension has declined and has been instead repurposed as a treatment of cancer cell proliferation and solid tumor growth. Beyond its function as a Cav blocker, the micromolar concentration of mibefradil can stimulate a rise in [Ca2+]cyt although the mechanism is poorly known. The chanzyme TRPM7 (transient receptor potential melastanin 7), the release of intracellular Ca2+ pools, and Ca2+ influx by ORAI channels have been associated with the increase in [Ca2+]cyt triggered by mibefradil. This study aims to investigate the cellular targets and pathways associated with mibefradil’s effect on [Ca2+]cyt. To address these questions, we monitored changes in [Ca2+]cyt in the specialized mouse epithelial cells (LS8 and ALC) and the widely used HEK-293 cells by stimulating these cells with mibefradil (0.1 μM to 100 μM). We show that mibefradil elicits an increase in [Ca2+]cyt at concentrations above 10 μM (IC50 around 50 μM) and a fast Ca2+ increase capacity at 100 μM. We found that inhibiting IP3 receptors, depleting the ER-Ca2+ stores, or blocking phospholipase C (PLC), significantly decreased the capacity of mibefradil to elevate [Ca2+]cyt. Moreover, the transient application of 100 μM mibefradil triggered Ca2+ influx by store-operated Ca2+ entry (SOCE) mediated by the ORAI channels. Our findings reveal that IP3R and PLC are potential new targets of mibefradil offering novel insights into the effects of this drug.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1670
Author(s):  
Jose J. López ◽  
Geraldine Siegfried ◽  
Carlos Cantonero ◽  
Fabienne Soulet ◽  
Jean Descarpentrie ◽  
...  

The intracellular calcium concentration ([Ca2+]i) modulation plays a key role in the regulation of cellular growth and survival in normal cells and failure of [Ca2+]i homeostasis is involved in tumor initiation and progression. Here we showed that inhibition of Furin by its naturally occurring inhibitor the prodomain ppFurin in the MDA-MB-231 breast cancer cells resulted in enhanced store-operated calcium entry (SOCE) and reduced the cell malignant phenotype. Expression of ppFurin in a stable manner in MDA-MB-231 and the melanoma MDA-MB-435 cell lines inhibits Furin activity as assessed by in vitro digestion assays. Accordingly, cell transfection experiments revealed that the ppFurin-expressing cells are unable to adequately process the proprotein convertase (PC) substrates vascular endothelial growth factor C (proVEGF-C) and insulin-like growth factor-1 receptor (proIGF-1R). Compared to MDA-MB-435 cells, expression of ppFurin in MDA-MB-231 and BT20 cells significantly enhanced SOCE and induced constitutive Ca2+ entry. The enhanced SOCE is impaired by inhibition of Orai channels while the constitutive Ca2+ entry is attenuated by silencing or inhibition of TRPC6 or inhibition of Orai channels. Analysis of TRPC6 activation revealed its upregulated tyrosine phosphorylation in ppFurin-expressing MDA-MB-231 cells. In addition, while ppFurin had no effect on MDA-MB-435 cell viability, in MDA-MB-231 cells ppFurin expression reduced their viability and ability to migrate and enhanced their sensitization to the apoptosis inducer hydrogen peroxide and similar results were observed in BT20 cells. These findings suggest that Furin inhibition by ppFurin may be a useful strategy to interfere with Ca2+ mobilization, leading to breast cancer cells’ malignant phenotype repression and reduction of their resistance to treatments.


Cell Research ◽  
2021 ◽  
Author(s):  
Sarah A. Kazzaz ◽  
James H. Baraniak ◽  
Yandong Zhou ◽  
Donald L. Gill

2021 ◽  
Vol 118 (10) ◽  
pp. e2010789118
Author(s):  
Yihan Shen ◽  
Nagendra Babu Thillaiappan ◽  
Colin W. Taylor

Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.


Author(s):  
Adéla Tiffner ◽  
Lena Maltan ◽  
Marc Fahrner ◽  
Matthias Sallinger ◽  
Sarah Weiß ◽  
...  

Graphical AbstractOrai1 and Orai3 channel activation depends in an isoform-specific manner on two non-conserved residues in TM3 (Orai1: V181, L185, Orai3: A156, F160). Mutation of these residues to alanine leads in the absence of STIM1 to small constitutive activity of the respective Orai1 mutants, however, to huge constitutive currents of the respective Orai3 mutants. Overall, two non-conserved residues in TM3 control the maintenance of the closed state as well as an opening permissive conformation of Orai channels in an isoform-specific manner.


Cell Calcium ◽  
2020 ◽  
Vol 91 ◽  
pp. 102262
Author(s):  
Hwei Ling Ong ◽  
Indu Suresh Ambudkar

Sign in / Sign up

Export Citation Format

Share Document