Paired‐like homeodomain transcription factor 2 affects endometrial cell function and embryo implantation through the Wnt/β‐catenin pathway

Author(s):  
Hongshuo Zhang ◽  
Jia Qi ◽  
Jinqiu Guo ◽  
Yufei Wang ◽  
Ying Guan ◽  
...  

Author(s):  
Yichen Dai ◽  
Sonia Trigueros ◽  
Peter W. H. Holland

AbstractGerbils are a subfamily of rodents living in arid regions of Asia and Africa. Recent studies have shown that several gerbil species have unusual amino acid changes in the PDX1 protein, a homeodomain transcription factor essential for pancreatic development and β-cell function. These changes were linked to strong GC-bias in the genome that may be caused by GC-biased gene conversion, and it has been hypothesized that this caused accumulation of deleterious changes. Here we use two approaches to examine if the unusual changes are adaptive or deleterious. First, we compare PDX1 protein sequences between 38 rodents to test for association with habitat. We show the PDX1 homeodomain is almost totally conserved in rodents, apart from gerbils, regardless of habitat. Second, we use ectopic gene overexpression and gene editing in cell culture to compare functional properties of PDX1 proteins. We show that the divergent gerbil PDX1 protein inefficiently binds an insulin gene promoter and ineffectively regulates insulin expression in response to high glucose in rat cells. The protein has, however, retained the ability to regulate some other β-cell genes. We suggest that during the evolution of gerbils, the selection-blind process of biased gene conversion pushed fixation of mutations adversely affecting function of a normally conserved homeodomain protein. We argue these changes were not entirely adaptive and may be associated with metabolic disorders in gerbil species on high carbohydrate diets. This unusual pattern of molecular evolution could have had a constraining effect on habitat and diet choice in the gerbil lineage.



Science ◽  
2003 ◽  
Vol 302 (5647) ◽  
pp. 1041-1043 ◽  
Author(s):  
E. L. Pearce


Blood ◽  
2015 ◽  
Vol 125 (5) ◽  
pp. 803-814 ◽  
Author(s):  
Jacob T. Jackson ◽  
Chayanica Nasa ◽  
Wei Shi ◽  
Nicholas D. Huntington ◽  
Clifford W. Bogue ◽  
...  

Key Points Hhex regulates development of diverse lymphoid lineages. Hhex regulates cycling of lymphoid precursors.



2006 ◽  
Vol 281 (50) ◽  
pp. 38385-38395 ◽  
Author(s):  
Therese B. Deramaudt ◽  
Mira M. Sachdeva ◽  
Melanie P. Wescott ◽  
Yuting Chen ◽  
Doris A. Stoffers ◽  
...  


Author(s):  
Tracy Zhang

Recurrent miscarriage is a condition that affects 1% of all women, and rejection of the fetus by the mother's immune system is thought to be one of the underlying causes. The mechanisms of maternal tolerance vital to a successful pregnancy are not well understood; however, uterine natural killer (uNK) cells are implicated as they comprise over 70% of immune cells in the uterus during early pregnancy. Heme oxygenase‐1 (HO‐1) is an enzyme that is known to be immunosuppressive. Moreover, mice missing HO‐1 have extremely high abortion rates. This study is the first to analyze the effects of HO‐1 deficiency specifically on uNK cells. We posit that an absence of HO‐1 affects normal uNK cell‐mediated immunosuppression, and also possibly their ability to modify uterine spiral arteries supplying blood to the fetus. Our study analyzed embryos from mice lacking or deficient in HO‐1 on days 8, 10, and 12 of pregnancy. Both number of uNK cells and degree of vascularization were analyzed using immunohistochemistry staining. We observed a significantly higher number of uNK cells in one area of the embryo implantation site and a significantly lower number of cells in another, suggesting the uNK cells are failing to localize properly. Analysis of vascularization is currently ongoing. Since women with multiple miscarriages have been shown to down‐regulate HO‐1, confirmation that absence of HO‐1 leads to implantation site abnormalities could pave the way for future clinical treatments.  



FEBS Letters ◽  
1999 ◽  
Vol 461 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Tilo Moede ◽  
Barbara Leibiger ◽  
Hamedeh Ghanaat Pour ◽  
Per-Olof Berggren ◽  
Ingo B Leibiger


Sign in / Sign up

Export Citation Format

Share Document