Experimental Investigation on Single‐Droplet Deformation and Breakup in a Concave‐Wall Jet

Author(s):  
Jing Zhang ◽  
Yibo Gao ◽  
Bin Gong ◽  
Yaxia Li ◽  
Jianhua Wu
2010 ◽  
Vol 20 (10) ◽  
pp. 909-922 ◽  
Author(s):  
Nikos Nikolopoulos ◽  
George Strotos ◽  
Konstantinos-Stephen P. Nikas ◽  
Manolis Gavaises ◽  
Andreas Theodorakakos ◽  
...  

2015 ◽  
Vol 56 (5) ◽  
Author(s):  
Ahmed Kaffel ◽  
Jean Moureh ◽  
Jean-Luc Harion ◽  
Serge Russeil

2020 ◽  
Vol 32 (5) ◽  
pp. 837-845
Author(s):  
Dian Li ◽  
Tai Wang ◽  
Shuo Chen ◽  
Qingyuan Liu ◽  
Yingbai Xie ◽  
...  

2019 ◽  
Vol 869 ◽  
pp. 634-645 ◽  
Author(s):  
Shangkun Wang ◽  
Yonghong Zhong ◽  
Haisheng Fang

In the drop-on-demand (DOD) inkjet system, deformation process and the direct relations between the droplet motions and the liquid properties have been seldom investigated, although they are very critical for the printing accuracy. In this study, experiments and computational simulations regarding deformation of a single droplet driven by a piezoelectric nozzle have been conducted to address the deformation characteristics of droplets. It is found that the droplet deformation is influenced by the pressure wave propagation in the ink channel related to the driven parameters and reflected in the subsequent droplet motions. The deformation extent oscillates with a certain period of $T$ and a decreasing amplitude as the droplet moves downwards. The deformation extent is found strongly dependent on the capillary number ($Ca$), first ascending and then descending as the number increases. The maximum value of the deformation extent is surprisingly found to be within range of 0.068–0.082 of the $Ca$ number regardless of other factors. Furthermore, the Rayleigh’s linear relation of the oscillation frequency of the droplet to the parameter, $\sqrt{\unicode[STIX]{x1D70E}/\unicode[STIX]{x1D70C}r^{3}}$ (where $\unicode[STIX]{x1D70E}$ is the surface tension coefficient, $\unicode[STIX]{x1D70C}$ is the density and $r$ is the droplet’s radius), is updated with a smaller slope shown both by experiment and simulation.


2010 ◽  
Vol 129-131 ◽  
pp. 365-369 ◽  
Author(s):  
Cheng Kun Liu ◽  
Mei Yu Chen ◽  
Run Jun Sun ◽  
Wei Hua Zhang ◽  
Zhao Huan Zhang ◽  
...  

In electrospinning, outlook of fibrous assembly changes not only with the variation of collecting setups, but with the electrospinning process. For example, formation of multiple jets on a single droplet at special electrospinning conditions can produce several regions of fibrous webs simultaneously, which is bound to bring a great increase of production of nanofibers. The initiation method of multiple jets during electrospinning was derived through an experimental investigation by means of a high-speed camera, which was used to obtain the information of the shape change of a droplet along with process conditions, such as solution concentration, voltage and flow rate. Results showed that multiple jets could be initiated in a controlled manner when droplets experienced several cycles of dripping at relatively high voltages and flow rates in a certain concentration range. An interesting phenomenon of the auto-initiation of double jets was further observed in our experiment.


2013 ◽  
Vol 13 (3) ◽  
pp. 706-724 ◽  
Author(s):  
Samaneh Farokhirad ◽  
Taehun Lee ◽  
Jeffrey F. Morris

AbstractLattice Boltzmann simulations based on the Cahn-Hilliard diffuse interface approach are performed for droplet dynamics in viscous fluid under shear flow, where the degree of confinement between two parallel walls can play an important role. The effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio on droplet deformation and break-up in moderately and highly confined shear flows are investigated.


2020 ◽  
Vol 69 (2) ◽  
pp. 024702
Author(s):  
Peng-Bo Tang ◽  
Guan-Qing Wang ◽  
Lu Wang ◽  
Zhong-Yu Shi ◽  
Yuan Li ◽  
...  

2001 ◽  
Vol 24 (3) ◽  
pp. 169-191
Author(s):  
Gamal H. Moustafa ◽  
Mousa M Mohamed

Author(s):  
Mark Wendel ◽  
Patrick Geoghegan ◽  
David Felde

Pressure waves created in liquid mercury targets at the pulsed Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target vessel. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel is characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.


Sign in / Sign up

Export Citation Format

Share Document