Experimental Investigation on the Multiple Jets from a Single Droplet by Electrospinning

2010 ◽  
Vol 129-131 ◽  
pp. 365-369 ◽  
Author(s):  
Cheng Kun Liu ◽  
Mei Yu Chen ◽  
Run Jun Sun ◽  
Wei Hua Zhang ◽  
Zhao Huan Zhang ◽  
...  

In electrospinning, outlook of fibrous assembly changes not only with the variation of collecting setups, but with the electrospinning process. For example, formation of multiple jets on a single droplet at special electrospinning conditions can produce several regions of fibrous webs simultaneously, which is bound to bring a great increase of production of nanofibers. The initiation method of multiple jets during electrospinning was derived through an experimental investigation by means of a high-speed camera, which was used to obtain the information of the shape change of a droplet along with process conditions, such as solution concentration, voltage and flow rate. Results showed that multiple jets could be initiated in a controlled manner when droplets experienced several cycles of dripping at relatively high voltages and flow rates in a certain concentration range. An interesting phenomenon of the auto-initiation of double jets was further observed in our experiment.

2016 ◽  
Vol 14 (1) ◽  
pp. 283-288 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar

AbstractThe main objective of the present study is to prepare a chitosan based nanofiber and model the electrospinning process using response surface methodology (RSM). The electrospinning parameters such as collector distance, polymer solution concentration and applied voltage were optimized by using three-variable-three-level Box–Behnken design (BBD). Based on RSM analysis, second order polynomial equation was formed and it indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the individual and interactive effects of process variables on chitosan based nanofiber diameter. The optimum process conditions for the minimum chitosan based nanofiber diameter (0.3 µm) were found to be collector distance of 12 cm, polymer solution concentration of 25% and applied voltage of 6 kV.


2018 ◽  
Vol 49 (7) ◽  
pp. 858-874 ◽  
Author(s):  
Parvaneh Kheirkhah Barzoki ◽  
Masoud Latifi ◽  
Amir Masoud Rezadoust

In this study and for the first time, aligned nanofibers were produced from low molecular weight polyvinyl butyral. Using response surface methodology, the preparation condition of aligned nanofiber was optimized in terms of nanofiber diameter and its structural stability. Central composite design as a response surface methodology was employed and the effects of process variables and their influence on nanofiber diameter were investigated. Based on a statistical analysis, the use of a model, which was used to determine the nanofiber diameter, proved to be successful because of its low probability value (0.0073) and high correlation coefficient (0.9619). A high-speed cylinder collector was used to fabricate aligned polyvinyl butyral nanofibers. The optimum conditions of 17.5 kV voltage, 10 cm collector distance, 13% solution concentration, and 2100 r/min rotational speed were obtained from experiments. The least diameter of 158.6 nm along with a stable structure was determined for polyvinyl butyral nanofiber prepared under the optimum conditions. An aligned polyvinyl butyral nanoweb was applied on the mid-layer of glass-phenolic laminated composites as an interlaminar reinforcement. The fracture behavior of the laminates was determined by end-notched flexure tests. Excellent toughening property which was observed for the aligned polyvinyl butyral nanofibers caused the mode-II fracture toughness and its maximum force to increase by 25.2 and 40.8%, respectively.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 842 ◽  
Author(s):  
Yuansheng Zheng ◽  
Na Meng ◽  
Binjie Xin

In this study we investigated the effects of jet path on the morphology and mat size of synthetic polystyrene (PS) fibers during the electrospinning process. In addition, the mechanism of the fiber mats, which were prepared by varying the solution concentration, was evaluated. The straight jet length, envelope cone and whipping frequency of each electrospun jet were studied using images captured by a high-speed photography camera. The results showed that higher solution concentrations led to longer straight jet lengths, smaller envelope cones and lower whipping frequencies. The diameter and surface morphology of the PS fibers were also characterized by scanning electron microscopy (SEM). It was found that fibers spun with higher solution concentrations exhibited larger diameters and diameter distributions because of their jet path features. Furthermore, the electrospun jets with higher concentrations increased elongation and produced smaller fiber mats and higher breaking forces as a result of their different jet paths, which was a consequence of varying the solution concentration.


2019 ◽  
Vol 116 ◽  
pp. 00080
Author(s):  
Karolina Sobczyk ◽  
Maciej Borowczak ◽  
Karol Leluk

Polymer matrix (MATER-BI) electrospinning tests were carried out under various process conditions. Structures with a diversified morphology have been obtained. Changing the parameters of electrospinning process (mainly voltage and solution concentration) resulted in products with different morphology.


2010 ◽  
Vol 20 (10) ◽  
pp. 909-922 ◽  
Author(s):  
Nikos Nikolopoulos ◽  
George Strotos ◽  
Konstantinos-Stephen P. Nikas ◽  
Manolis Gavaises ◽  
Andreas Theodorakakos ◽  
...  

2012 ◽  
Vol 43 (4) ◽  
pp. 481-496 ◽  
Author(s):  
Valeriy Ivanovich Zapryagaev ◽  
Nikolay Petrovich Kiselev ◽  
Dmitriy Andreevich Gubanov

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1229
Author(s):  
Hongtao Zhang ◽  
Zhihua Wang ◽  
Yong He ◽  
Jie Huang ◽  
Kefa Cen

To improve our understanding of the interactive effects in combustion of binary multicomponent fuel droplets at sub-atmospheric pressure, combustion experiments were conducted on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of the interactive droplets was recorded by a high-speed camera and a mirrorless camera. The results showed that the flame propagation time from burning droplet to unburned droplet was proportional to the normalised spacing distance between droplets and the ambient pressure. Meanwhile, the maximum normalised spacing distance from which the left droplet can be ignited has been investigated under different ambient pressure. The burning rate was evaluated and found to have the same trend as the single droplet combustion, which decreased with the reduction in the pressure. For every experiment, the interactive coefficient was less than one owing to the oxygen competition, except for the experiment at L/D0 = 2.5 and P = 1.0 bar. During the interactive combustion, puffing and microexplosion were found to have a significant impact on secondary atomization, ignition and extinction.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2098
Author(s):  
Tomas Kalous ◽  
Pavel Holec ◽  
Jakub Erben ◽  
Martin Bilek ◽  
Ondrej Batka ◽  
...  

The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.


Sign in / Sign up

Export Citation Format

Share Document