scholarly journals Electrosynthesis of Electrochromic Polymer Membranes Based on 3,6-Di(2-thienyl)carbazole and Thiophene Derivatives

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Chung-Wen Kuo ◽  
Jui-Cheng Chang ◽  
Jeng-Kuei Chang ◽  
Sheng-Wei Huang ◽  
Pei-Ying Lee ◽  
...  

Five carbazole-containing polymeric membranes (PDTC, P(DTC-co-BTP), P(DTC-co-BTP2), P(DTC-co-TF), and P(DTC-co-TF2)) were electrodeposited on transparent conductive electrodes. P(DTC-co-BTP2) shows a high ΔT (68.4%) at 855 nm. The multichromic properties of P(DTC-co-TF2) membrane range between dark yellow, yellowish-green, gunmetal gray, and dark gray in various reduced and oxidized states. Polymer-based organic electrochromic devices are assembled using 2,2′-bithiophene- and 2-(2-thienyl)furan-based copolymers as anodic membranes, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as the cathodic membrane. P(DTC-co-TF)/PEDOT-PSS electrochromic device (ECD) displays a high transmittance change (ΔT%) (43.4%) at 627 nm as well as a rapid switching time (less than 0.6 s) from a colored to a bleached state. Moreover, P(DTC-co-TF2)/PEDOT-PSS ECD shows satisfactory optical memory (the transmittance change is less than 2.9% in the colored state) and high coloration efficiency (512.6 cm2 C−1) at 627 nm.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan Ling ◽  
Jianchang Wu ◽  
Fengyu Su ◽  
Yanqing Tian ◽  
Yan Jun Liu

AbstractElectrochromic devices can modulate their light absorption under a small driving voltage, but the requirement for external electrical supplies causes response-lag. To address this problem, self-powered electrochromic devices have been studied recently. However, insensitivity to the surrounding light and unsatisfactory stability of electrochromic devices have hindered their critical applications. Herein, novel perovskite solar cell-powered all-in-one gel electrochromic devices have been assembled and studied in order to achieve automatic light adjustment. Two alkynyl-containing viologen derivatives are synthesized as electrochromic materials, the devices with very high stability (up to 70000 cycles) serves as the energy storage and smart window, while the perovskite solar cell with power-conversion-efficiency up to 18.3% serves as the light detector and power harvester. The combined devices can automatically switch between bleached and colored state to adjust light absorption with variable surrounding light intensity in real-time swiftly, which establish significant potentials for applications as modern all-day intelligent windows.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1136
Author(s):  
Chung-Wen Kuo ◽  
Jui-Cheng Chang ◽  
Jeng-Kuei Chang ◽  
Sheng-Wei Huang ◽  
Pei-Ying Lee ◽  
...  

A 1,3-bis(carbazol-9-yl)benzene derivative (BPBC) was synthesized and its related homopolymer (PBPBC) and copolymers (P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK)) were prepared using electrochemical polymerization. Investigations of polymeric spectra showed that PBPBC film was grey, iron-grey, yellowish-grey, and greyish-green from the neutral to the oxidized state. P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK) films showed multicolor transitions from the reduced to the oxidized state. The transmittance change (DT) of PBPBC, P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK) films were 29.6% at 1040 nm, 44.4% at 1030 nm, 22.3% at 1050 nm, and 41.4% at 1070 nm. The coloration efficiency (η) of PBPBC and P(BPBC-co-CDTK) films were evaluated to be 140.3 cm2 C−1 at 1040 nm and 283.7 cm2 C−1 at 1070 nm, respectively. A P(BPBC-co-BT)/PEDOT electrochromic device (ECD) showed a large DT (36.2% at 625 nm) and a fast response time (less than 0.5 s), whereas a P(BPBC-co-CDTK)/PEDOT ECD revealed a large η (534.4 cm2 C–1 at 610 nm) and sufficient optical circuit memory.


2004 ◽  
Vol 9 (4) ◽  
pp. 363-372 ◽  
Author(s):  
T. Lukaszewicz ◽  
A. Ravinski ◽  
I. Makoed

A new multilayer electrochromic device has been constructed according to the following pattern: glass1/ITO/WO3/gel electrolyte/BP/ITO/glass2, where ITO is a transparent conducting film made of indium and tin oxide and with the surface resistance equal 8–10 Ω/cm2 . The electrochromic devices obtained in the research are characterized by great (considerable) transmittance variation between coloration and bleaching state (25–40% at applied voltage of 1.5 to 3 V), and also high coloration efficiency (above 100 cm2 /C). Selfconsistent energy bands, dielectric permittivity and optical parameters are calculated using a full-potential linear muffin-tin orbital method. The numerical solution of the Debye-Smoluchowski equations is developed for simulating recombination probability of Li+ ions in amorphous electrolyte.


2021 ◽  
Vol 8 (4) ◽  
pp. 726-734
Author(s):  
Sven Macher ◽  
Mauro Sassi ◽  
Luca Beverina ◽  
Uwe Posset ◽  
Marco Schott ◽  
...  

1996 ◽  
Vol 8 (10) ◽  
pp. 808-811 ◽  
Author(s):  
Shawn A. Sapp ◽  
Gregory A. Sotzing ◽  
Jerry L. Reddinger ◽  
John R. Reynolds

2004 ◽  
Vol 567 (2) ◽  
pp. 243-248 ◽  
Author(s):  
A.S. Ribeiro ◽  
D.A. Machado ◽  
P. Faria dos Santos Filho ◽  
M.-A. De Paoli

2019 ◽  
Vol 7 (10) ◽  
pp. 2871-2879 ◽  
Author(s):  
Susmita Roy ◽  
Chanchal Chakraborty

Herein, we fabricated the ordered polymer nanostructures by compositing the electrochromic polymer polyFe to significantly improve the colouration efficiency and switching times.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 267 ◽  
Author(s):  
Robert Brooke ◽  
Jesper Edberg ◽  
Xavier Crispin ◽  
Magnus Berggren ◽  
Isak Engquist ◽  
...  

Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.


Sign in / Sign up

Export Citation Format

Share Document