scholarly journals Assessment of the Imperfections for Plate Buckling of Unstiffened Plates

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1814-1821
Author(s):  
Larissa Schönfeld ◽  
Bernd Naujoks ◽  
Christian Ludwig
Keyword(s):  
Structures ◽  
2020 ◽  
Vol 28 ◽  
pp. 2321-2334
Author(s):  
Mostafa Mohamed Ibrahim ◽  
Ihab Mohamed El Aghoury ◽  
Sherif Abdel-Basset Ibrahim

2016 ◽  
Vol 710 ◽  
pp. 363-368
Author(s):  
László Gergely Vigh ◽  
Dib Abdelkarim

The paper focuses on overall and local web plate buckling of longitudinally multi-stiffened aluminium plate girders subjected to compression, bending, shear and transverse loading. The authors completed wide-range bifurcation stability analysis by energy method. Based on the results of the completed parametric study, buckling coefficients are formulated, taking also into account the possible interaction of local and overall buckling. Modifications are proposed for the standard Eurocode calculations of critical loads. Modification in resistance calculation for web crippling is also proposed to take the beneficial effect of curved flange-to-web connection into account. Numerical model is developed for nonlinear static analysis. Virtual experimenting – considering actual material behaviour and imperfections – is invoked for the calibration of the model.


Author(s):  
T X Yu ◽  
W Johnson ◽  
W J Stronge

Shallow spheroidal shell segments have been press formed from rectangular plates by stamping between a die and matching punch that have two degrees of curvature. Experiments on mild steel, copper and aluminium plates that were not clamped in the die have measured the punch force, contact regions and final curvature distribution; and have observed plate buckling for a range of die curvature ratios and plate sizes. An analysis based on a rigid/plastic material idealization and decoupled in-plane forces and bending moments has been correlated with these experiments. The sequence of deformation modes has been identified; initially these are bending but in later stages, in-plane forces predominate.


1994 ◽  
Vol 10 (03) ◽  
pp. 146-155
Author(s):  
Nicholas Hatzidakis ◽  
Michael M. Bernitsas

Five alternative configurations of orthogonally stiffened plates are compared in order to identify the total cost optimum design including material and fabrication cost. Size optimization is performed within the limitations of structural component standardization for each of the five alternatives. The five optimal structures are then compared in terms of weight, fabrication, and total cost. Discrete sizing optimization is performed in this paper with two design variables, i.e., plate thickness and standardized beam cross section. Constraints are imposed on secondary and tertiary stresses computed by finite-element analysis (FEA); and on primary stresses to prevent plate buckling, stiffener tripping, and overall buckling. Confidence is established in the FEA results by making comparisons with FEA results using the effective breadth method and orthotropic plate theory. Producibility constraints dictated by standardization in shipyard practice are imposed as well.


Sign in / Sign up

Export Citation Format

Share Document