Full-scale tests on composite structures with low degree of shear connection

ce/papers ◽  
2017 ◽  
Vol 1 (5-6) ◽  
pp. 297-302
Author(s):  
Therese Sheehan ◽  
Xianghe Dai ◽  
Dennis Lam
Author(s):  
Aaron O. Akotuah ◽  
Sabah G. Ali ◽  
Jeffrey Erochko ◽  
Xia Zhang ◽  
George V. Hadjisophocleous

Connection design is critical in timber buildings since the connections tend to have lower strength than the structural members themselves and they tend to fail in a brittle manner. The effect of connection geometry on the fire performance of a hybrid steel-timber shear connection is investigated by full-scale testing. These tests were conducted by exposing the test specimens to the standard time-temperature curve defined by CAN/ULC-S101 (CAN/ULC-S101, 2007). Test results showed that the fire resistance of these connections depends on the load ratio, the type of connection and the relative exposure of the steel plate to fire. Finite element models of the connections under fire were constructed using ABAQUS/CAE and these were validated using the test results. These numerical model results correlate well with test results with ±8.32% variation.


Author(s):  
Joel Donizete Martins ◽  
Sineval Esteves Pereira Junior ◽  
Ellen Martins Xavier ◽  
Luiz Henrique de Almeida Neiva ◽  
Arlene Maria Cunha Sarmanho

Abstract In the present work, two composite trusses formed by tubular shapes supporting a concrete slab were evaluated. Based on analytical formulation related to the problem, according to recommendations of standards, numerical analyses were performed, with models created using the software Ansys, and an experimental analysis with full-scale tests. Good agreement between the three analysis types was observed. A possible shear connection failure in one truss was observed. With a change in the second truss's connector length, an increase in the structure's strength and rigidity was achieved. In this study, because the shear connectors were directly welded on the upper chord wall, local effects with localized plastifications were evidenced.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


1984 ◽  
Vol 18 (4) ◽  
pp. 166-170
Author(s):  
A. L. Rakhmanova ◽  
I. O. Rybak

Sign in / Sign up

Export Citation Format

Share Document